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This paper constitutes a departure from the previous, formal and 
an-ical, treatment6 of the subject. It presents l i t t l e  tha t  is novel; 
it is written colloqaially; it is concerned just as much with mere verbal 
qualitative discussions as with quantitative evaluations; it is frw 

I .  concerned more with reader's at t i tude t o  the f ac t s  than with the  facts 
themselves; and it makes no wetense of brevity. Nevertheless, t h i s  
presentation has beqn fourd necessaxy. T b r e  are m a q  concepts which ought 
t o  be more widely understood if our thinking is  not t o  be assified, and if we 
are t o  continue - by working together - t o  push out the f ront iers  of ball ist ics.  
In the present s ta te  of art not aU of these concepts can be put i n  the 
precise language of mathematics; but t o  contbue t o  ignore them would be a 
poor substi tute fo r  precision. Verbal discussion and studied colloquialism 
have a legitimate - if modest - place in bal l is t ics .  C e r h i d y ,  facts are of 
no use unless they are hm t o  those who have an opportunity t o  use them. 
Erevity is often m r d m e :  a ba l l i s t i c ian  spends many of his evenings with 
pencil and paper, trying t o  understand tb unstated implications of a brief - 
and therefore allegedly easy - text. 

The premise of this paper is that  a visualization of a physical 
phenomenon is useful: not so much because on occasians it might be a l l  t ha t  
is necessary, as because on feu occasions it .tgM open a nev vista. Qe 
course, visualisation is part-and-parcel of aqyunderstanding; but the reader 
kll(Ns himself t ha t  it is a l l  too often crcuded out by algebra. 

The paper is meant t o  supplement, rather than t o  supplant, t h s  existing 
texts  on the subject. T k ,  the avoidance of the calculus is, af course, 
merely a pose; but it i s  a pose which does no: harm, and which might- on 
occasions - be stimulating. 
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A SBPLPIED APFBWH TO TEE WINO FIOfION Q A SPINNR?G SHELL 

An attempt is rmde t o  free the thsoq  of yawing motion of a shall  
f r a m  the excessive and frustrating reliance upon the resumptiol~s af 
linearity. A method of looking upon the yawing motion is suggested 
whereby the p w i c a l  significance, or the mecbnh~ ,  of the effect 
produced by various forces and torques acting upon the shell can be 
vividly visualb8d, uithout resorting t o  the linearization of the 
problem (or t o  calculus). 

L 
The Plcthod consists essentially of considering the vector of 

I angnh- m-ntam E, and separating the dynamic canoept (ih motion of 
L d e r  ths influence of ap lied tcn~ue, here termed *qaasi-preuessionn) 
harm the kinematic concept 'i the motion of the she l l  u i th  respect t o  5. 
here termed *quasiirmtationU ) . 

The method is tested by an application t o  the solved, linear, case: 
1 it is used t o  derive - and t o  interpret - a l l  conclusi~ims of the linear 

theory. 

The principal value of the method is pe&gugical. It shows a pramise 
i n  t a c u  certain more complicated problems of ballistles, such as 
stabi l i ty of liquid-filled shell. 
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RJTRCDUCT ION 

The theory of the  p i n g  motion af a shel l  is an ancient and important 
subject of ballistics: it l i e s  a t  the root of well-nigh a l l  problsm of 
ordnance tha t  involve the accuracy of fire. It seem that this theory 
deserves being lmourr more rridely, and used more frequently, than i a  the 
case now. Also, it deserves an occasional re-assessment. 

Traditionally, th subject has been the damain - and perhaps, monopoly - 
of what ue sha l l  c a l l  tbe mathematical approach. TbLs situation, apparently, 
is the resul t  of the elegance and power v i t h  which thia approach solves the 
basic problams of the s t ab i l i t y  of a slaell. Ye nar take it for granted that  
the first s tep  i n  any investigation af the  p i n g  motion muat be an idealieation 
of the  problem; tha t  the elementary p-ical facts mugt be condensed, in  a 
sisnplified f o r m ,  into the mathematical notation; that the interpm of these 
facts  can be bmdled as mere algebraic arb8titutions, and the totality of 
these facts must be ezpxssed as a system of di f ferent ia l  apat ions ,  tho 
solution of w h i c h  may be obtained by abstract mathematical methods, nut 
requiring an initmate ~Iulerstandjag of the m i c a  significance of each 
5nteFmediats step; tha t  the p-ical significance, if and when needed,uill 
re-emerge in e- the matkaatical  solntion; that the  sxperlmsntal 
t e s t s  must be designed, and the experimental data gk?mirwl, around tbis 
abstract solution; and finally, that  predictions may be Blade by these method8 
tha t  w i l l  possess oansiderable gema l i ty .  

It is of in teres t  t o  observe that  this t radi t inn appears t o  be relat ively 
gaung; f OP it is diffioult t o  trace it far mad the cLassical work of Fauler 
in the First World War. Baised in the belief in tb prxrer of mathematical 
deduction, we ndght surmise, for instance, tha t  the intFoduction of rifling 
vas a r e sa l t  of Eultwte theory of ep5nning top; t h i s  indeed might have bass 
relevant as far as a r t i l l e r y  is concerned. But the rifles of t he  Bmerricaa 
R w o l u t i o ~  vere made by the village blaekemith, inaaoent of the  the- 
the most advaaced nation in Eurbpe was still mass-yroducing tho smooth-bcee 
&aim Bess. The importance of the  mathematical approaoh, clemly, rests not 
upon tradition, bat on hopes that it vill produce ussf'nl resu l t s  so one^ than 
a haphazard invention and amphieism can prduce thsar. It is therefore not 
inappropriate that f ~ o m  the prwhg-pound point af vim (athe pro14 of the  
pudding is i n  the eat*) ve inqnkm, occasiodUy9 vh thex  the  mathematical 
approach itareU - that is, the idea that  it is pwsible  t o  a the  rigm 
of mtheuiat ic~ t o  a f i e l d  of enginewing ( t o  w i t ,  h L U l t i c s y  has ll-d 
up t o  the expectations. 

The f ac t  is, the problem of the yawing motion af a shell has been sdosrd 
(and iadeed, vindicated), oply for  the biglily simplified, linear case. Since 
the undarlying assumption usually fs that  the yaw is  rsmall,this is as though 
the theory solves the problem only when the she l l  fliss rather satisfactorily. 

When some of the sinp,lifging assumptioris (such a9 the  l inear i ty  of the 
farce and torque system, smalJness of the  yaws apmetry of the shell, eta.) 
have t o  be rescinded, ths compld ty  of the  problem paws rapidly. fn fact, 
most of the  present W Q P ~  in this f i e ld  anticipates an extensive use of 
modern high-speed cclmputing machines. In %his connection it % particularly 



ma- that  with the r e c i a o n  of the linearity it ia no longer 
legitimate t o  u t i l i ze  that baaic feature of the  l inear theory, the de- 
composition of the yaw into two normal modes, precession and ziutatia. 
The rmnmrical solution af the  equations of ysving motion became8 extremely 
labarious, and pst much af the information expected from t h i s  solution 
(e.g., the  infarmatian tht the she l l  is yawing approximately epiqdoidally) 
resembles very mch the information abady available Porn the  W a r  theory. 
T b  practical  result  usually is that the  available M i c a t i o m  of non-linearity 
are simply sappressed - rat- than investigated. In other wards ( t o  mix 
a metaphar), the elegance of tha linear theory haa -fied such influwe 
on the  metbods of baJlistics that  the present-day theory is chained to the 
assumptions of l inear i ty  as t o  a point of diminishing returns. Them e t a  
an acute naed far a more pwerfPl method of taclding tha problem of yadng 
motion. 

The method suggested hereby has no claim of being a complete ansue 
t o  this need; yet it m i g h t  be a contribsting factor. What it has t o  offer 
is simply an easier viauali&ation of t l m  problem; an$ it is quite possible 
that a future method orill be depandent upon a visualization and a judg-t-. 

h oru problem, par t icalar lp  - that  of liquid-filled she l l  - the 
tradit ional  mathematical approach appeara t o  be simply stalemated. It has 
not been possible t o  get even t o  first base, i.e., t o  famulate total  
different ia l  equations aP the  motion; while a solution of partial differentia$ 
equation6 of the  motion of the  l iquid d t h l n  the she l l  ( ~ L t h  the object of 
using tho resu l t s  in deteTmlning the motion of the shel l )  s e w  a long w a y  
off. It is  in connection with this problem that  the method suggested in t h i s  
report arose. It started aa an attempt t o  by-pass the  d i f fe ren t ia l  equations 
bg means af v i sua l i zhg  the motion of the l iquid within the paving afiell, 
ar as an esthetic, or quali tat ive nreasoniag* (if such a term m e y  bs applied). 
It was not easy, haumer, t o  meet the contemporary etandards set by the 
t radi t ion of the &hematical approach; in fact, a number af pi t fp l la  of 
t h i s  uqualitativa reaaoniak haw been f d .  Far t b i a  reason it appeared 
best t o  expound this method for tho simple case of a rigid sBell, pnd ta 
t e s t  it by applying it t o  the solved l inear case (where thia method can 
be used t o  r ede r ive  and t o  interpret all conclnsiona of the  linear theory); 
postponing the possible application of t h i s  method t o  the cases of 
non-linearity, m e t r y ,  and liquid filler. 

Ru method is non-mathematical 0- in  this respect; we shall not 
requise of tb reader the formal knwledge of calculus and of d i f fe ren t ia l  
equations. Thio ia rather a temous simplification, s ce t he  d i f fe ren t ia l  
equations, of course, are the essence of t h s  pcoble~~. % the  o t h r  W, 
we sha l l  expect the reader t o  have a mastery of algebra, geometry, plane 
(and possibly, spherical) trigonometry; of the  concepts of torque and 
angular velocity a s  vsctors defined i n  the right-handed sense; of ths 
principal axss of inertia (i.e., the understanding that  a rigid bcdy 
spin steadily only if it is dynamically balanced about tha ads ,  and that  
there are a t  l eas t  t h e e  such, nnrtually parpendicular, axma in every r ig id  



body); of the moments of inertia; of the concept of the vector of angular 
nzomentum (which can be constructed by decomposing the instantaneous vector 
of angular velocity along the three mutual3y perpendicular axes of inertia 
of the body, multiplying each component by the corresponding moment  of 
inertia, and reoambjsiing the products vectarially); of the fact that the 
vector of applied torque is the velocity of the t i p  of the vector af anguler 
mamentum; of the resolution aE the motion of a pigid body in to  ths  mt i an  
of its center of gravity and the rotation about th fe  center of gravity; 
and of the w e  of complex mbers. 

Ye shall cans%isr only an axiaSIy.sylmsetric, spindle-Ue body vith 
moments of inertia A and B (A L B, B tb same about every traasverae arls 

h the  center of gravity). For mch a baiy the uniQ rector along tL 
the vector af angula~ velocity (m) and the vector of angul& 

z m  Ways co-&mar (Figure 1%. Fw, if tkm instantaneous 
motion of the body (with respe&b its cen* & gpavftp) is a rotation 
a t  an angular velocity m about an axis (g) that i s  different A.m 5, tb 

vector a - can r e s a d  in to  the axial spin dong a and the  m&s-~pin 

7 perpendicular t o  &; because of the symmetry, the d i r e c t i o n 3  af? may k - 
take~ as the secbnd b e i p a l  af fnertia ( t@m be* no component of m_ 
along the third s@sr aud & can be constructed Pa. the  c o q o n d  % along 

$ and Bxalong 5 ,  i.e., in the plans d 5 and 9 31 particular, ~ i n o e  

BAA, L - is alvays W k  aoray *ow $ than g is, and them exists the  relat ion 

Note that ,%us relation ~ r n a  a coincidell~s of the vectors r sad 
(which is t o  say, a l l w s  a steady lrnres'trained retiation of the boa$, a a 
steady rotat ion with no torque applied) only when the angle between 5 aod 
2 is 0, n or $2; in which casea the m o t i o n  ie e i thm r ptzra spin (right- 
handed or lef't-hand~d) op a pare cartwheelhg, 

Generally, hoveva~, the irsctor of aagtik velocity 2 5,s isither 
i n  space nap ip the body. It is for this reason, p8Thsps9 that students 
of baLlLt iEa have some slighk difficulties in maUzLtg tb, tbree- 
dimensional yawing motion of a r igid bdy. 

The v i s u ~ a t i o n  is faci l i ta ted by the decompcsitian cif the vector = imto tb colnponents b.y and . The cross-spin 7 , of course, is simply 

the velocity of %he +ip-of the un i t  v e e t o ~  A,. - in the surface of the  eph- 

which i s  centered a t  Che c.g. of the body? and moves with the bdy, but 
does not rotate; this velocity, of course, is a t  right angle5 t o  the vectm . In t h i ~  way we nsplaey the visualization of the motim af tha body 
R a t i o n  about a) - a *-ation af the motion of a  in. + with the  
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axial spin m, superposed if and when necessary. In other words, a three- 
.I. 

degree-af-freedom situation is replaced by a two-dimensional si tuation 
(5n the surface of the unit sphere). The motion of the  t i p  of the un i t  
vector $ - i n  the surface of the anit sphere can be specified, af course, 
as a rotat ion abmt the  vector (o. 

Harever, the w c t a  cc - is not a convenient point, of reference. The 
v e c t a  L is mch more -en%. We -shall g ~ e d 3 y  eee a t  it does 
not mm- as fest as cu and in particular, we knar haw it dogs mwe - d e . ,  
the velocity of its rip is the vector G of the  applied torque. The motion 
of the t ip  of q - m a y  be described as a-rotation about the inatPrrtaneous 

position of - L at an angular velocity 

We cen tbs describe the moticm of the lqy two statement6: 

$ rotates about the instantaneous position of L at an I* - - - 
angular velocity fi, and 

P. The velocity of the  t i p  gf & Ts & 
it being understood that  G can be deteqined Prom tb specification of 
A, and L (and other relev-& and available data). Ths statement 11, of - - - 
course, &a simply the applicable law of pipits; statement I cormects the 
easi ly visualisable (and measurable) vector 5 with the  vary relevant 

physical quantity, L. In most tezts on'txC&-tics ths Pector of arrgular 
momenhrm ia mentlaned br ief ly  in tb be- of a dePivation, and 
thereafter is re laced by the appropriate combinatirms of its elameltts 
(A, B, m, and '7) 7 . Our suggestion amounts t o  M t i n g  t h s  reader t o  
"think & terms of angular moment&, i.e., t o  make a bettar - maFe 
frequent, and more intimate - use of t h i s  essential  conoept. Tlae two 
statemnts,  togetber with a ~pec i f ica t ion  of G oarrespond, of course, 
t o  the  di f ferent ia l  equations of the angular ?&ion of the shell; they 
are t o  be augmented by the statement tha t  the  acceleration af tihe center 
of gravit is tk applied force divided by tb mass (with farm proper3y 
speclfied 3 . 

Art *-ortaut special  case occurs when there are no t o m w  acting 
upon the body ie.g., shell flies i n  vacuum). The the vector L is 
constant. A very simple description of the motion is then possible. 
A s  the  vector 5 an Figure 1 comes out of the plane of the  paper (rotating 
about a), - the co-flanarity of 5, (O L - be pese-d; hence the 



vectcr a, - comes out of the plane of the paperb too. Since the angle %0& 

is not ckanging, by (1) the angles - - aad olOL - - are not changing either; 

hence the whole t r i p l e t  of vectors - A1, a, - and - L is rotating (as a rigid 

plans) a b u t  L. The motion af the body is a ro l l ing  of the  circular cone 
d half-sngle-~lh - - on the circular cone of half-angle u_OL. - 

It ia not amiss a t  thla point t o  make several trivial observations. 
The motion is not a simple rotatian, it is rolling; yet  it is a bash, 
steady, type of motion, that  may go on forever - iP our asmmptiona (SO 
far, only the  r ig id i ty  a& syrmnetry of the  body aui the absence nf applied 
torque) hold; this is t o  say that  the motion cart bs predicted f o r  
length of time. If ths  assumptions are  not qnite exact, the motion st i l l  
can be predicted, with same accuracy, for some interval of t h  - tha 
more nearly t rue  these asmu@iona, the  greater this interval. Tim angle 
%$nay have any value from 0 t o  n; it m y  also have an arbi t rary initial 
orientation (i-e., t f i r e  are scalars representing t2u arbi t rary 
constants of integration). 

We sha l l  c a l l  the angle _$d_ nquasi-tationll. . 
Since in thia problem ths only direction f w d  in s p c e  is & vlz., 

we may visualize the shellls c. g. aa stationary in space,it might bs also 
natural t o  call  t h i s  angle - in this case - the yaw. T h e  the  quaai- 
mtat ion  could be defined as the paw with respect t o  4; or, we might say 
that in va6num nutation tbo yaw with respect t o  L - consists of quasi- 
nutation. 

Tbe torque (or moment) acting upon the shell in fligkt ia specified, 
conventiondlly, as the smn of its coarpomnts; these campanents, 18 turn, 
being specified both in direction and magnitude, in certain co&nt ways .  
It is not quite a simple matter t o  outline, at the  outset, which ccmponents 
(or, as the parlance goes, which torques) should bs considered; the  atudent 
of bal l i s t i cs  would find it best t o  go by eaay steps, digesting w e l l  the 
basic concepts, a d  accepting or reject* the more advanced concepta as 
the need f a r  them, as well as the pmcticabi l i ty  of handling them, becomes 
clear. 

Gf these t a q u e s  the  most inportant one, theoretically, is the  an8 
whose vector i~ perpendicular t o  the  plane of p i  (i.e., whose coup& 
ia in the plane of yau), a d  whose magnitude dew& essential ly upon 
the angle of y ~ r  (angle frm t rajectory of center of g r a v i t y b  axda of 
sbell).  It is called usually simply %omentu , since bistol-icallg it 
was the only moment at f i r s t  considered; and, since it was fFrst oonsidered 
i n  connection with spin-atabilizrtion of  a r t i l l e r y  shell,  it is reckoned, 
cormentianelly, positive when overtur . Hence the more sxaot name 
(djxtinguishing it from other components 7 is averturning taque.  With 
fin-stabilized projecti les the  righting t a w  is reckoned merely as a 
negative werturning t-. 



In the l inear  theory the magnitude of this torque (M) is assumsd t o  
be proportional t o  the angle of yaw (6). The solution then is remarkably 
elegant. In certain tex t s  on ballistics M is assumed t o  be (for the 
reasons of certain convenience in the eliminary mathematics) proportional 
t o  sin6 (of'ten a misleading assumption P" or tan6 (sometimes a better 
approximation, though s t i l l  limited t o  small angles of yaw); in practice, 
both of these asmqptions eventually revert  t o  the assualption of l inear i ty  
in 6. The exact (and often not simple) -tion ~ ( 6 )  can be obtalned 
experimsntally, say, by wind-tunnel t es t s .  An exact &hamatical solution 
has been worked out but is - in camparism u i t h  the linear t h e w  - so  
cumbersome as t o  be considered impractical. It is precisely this gap 
between the  &ear and non-linear theories which OUR approach attwpts 
t o  hridge (ca. more exactly, our approach attempts t o  outline a method 
of laridging this gap). 

NVPATION AND PRF.CESSION 

There are tvo special cases when the yawing motion is part icularly 
simple - t o  dt, ciroulaF - even u i t h  a non-linear ~ ( 6 ) .  These cases 
a r i se  particularly riatarally if we assame, for the tim bgiug, tha t  
is v q  s m a l l ,  i,e., i, mwes only slowly; the motion is  almost, brtt not 
quite, the same as the a t a t i o n  in vacuw. 

Ist & be a unit vector in the direction of the trajectory, i.e., 

in the  direction of the velocity - o of the center of gravity o f t h e  shell. 

Cansider first the caae when is a p p e t e l y  i n  the same direction 

as L. The si tuation may be such ( ~ i p e s  2a and 2b) tht the  t r i p l e t  of 
a and L rabates, as a rigid plane, about In part ini lar ,  vecrors _$, - - 

if M is an wertunring torque (Figure 2a), 2 uonld b coleirlg oat  of the  
p&e of tb paper; the  motion then may be steady Ff is farther f r a  
$ than 2 is. Or, if - M is a righting torque (Figure 2 3 ,  w w l d  b 

mwing in to  the  plane of the papar; kt the motion still may lw steady 
if h is clwer t o  - A1 than - L is. In either case the motion of the bcdy 

is a-rolling of thd ;one 818, (same as before), but this tims ncrt on the 

cone of half-augle COOL (as was the case in vaounm) - rather, on the cone 
of a a l f a n g l e  dT, , The angular velocity of t h e  plane of yaw is slightly 

1wer than fi wit;; spin-stabjlized shell (Figure 2a), s l igh t ly  higher than 
fi with fin-stabillsed she l l  ( ~ i g u r e  2b). 

Such a motion is  c e l l  nutation. In it the gaw (the angle plml) is 

appronrimately t he  same as quasi--nutation (angle F), but also has a 
s l ight  component TIOL. We shall c d l  the angle TIOL " q u a s i ~ e c e s s i a n U .  

Note tha t  with both spin-stabilized and fin-stabilised shell the natation 
is in the same direction as  the spin. 



Notation : O denofes the tip of arrow coming out of the poper 
@ denotes the fail (fedhers) of arrow going into the paper 

u 

spin-sfabilized shell fin-stabilized shell 
f T between A, d L ) 

fig. 2: Nutation 

spin -sfobilized shell fin -stabilized shell 
(7; outside o f  any/e AOL ; /eft-hendad yowing) ' 

fig. 3: Precession 



Consider next the case when El is f a r  away f r o m  the  t r i p l e t  of vectors 

5, co and L. - This might be the  case, f o r  iastance, when the angle 5 O L  is 
s m a l l ;  and this w o u l d  mean that  the  cross-spin is ssnrall, i.e., the shell ads 

I % is m o v i n g  oaly slowly. The situation again may be such (Figrrres 3a and 

3b) tha t  the  t r i p l e t  - $, co - and L - rotates as a r ig id  plaae aboaf El. b 
I . -  

partintlar, i f  M is an ovwbmmhg torque, TI is s t i l l  on the same side at 

5 as L is, thmgh much farther iwey ( ~ i g u r e  3 4 .  Or, if I - i a  a righting 
torque, T_1 must be on the other side of $ from - L (Fignre 3b). T b  motion, 

agaia, i s  a r o w  of the  same cone P1C.h on the cone df l .  For spin- 

 tabi ill zed she l l  the angular velocity of the plane of yaw is in the  erne 
direction as spin, but niuch slouar than the  ra te  of vacnum nutation; for 
fin-stabilized shell, however, the motion is in a directian opposite t o  
spin. 

Such a motion is called precession. In it the yam consists mostly 
of the quasi-precession, but there is also  a s l igh t  component af quasi- 
nutation. 

Nutation and pecession are obviously pret ty mch  the saw kind of 
phenamenm; the difference between them appears t o  be merely quantitative. 
In fact ,  t h i s  seems t o  be precisely the case as far as the  original, 
astronomical, usage of these wards is concerned; the phenamena which 
go by these names are of the s w e  nature, viz., tb mbstantial ly 
circular  yawing motion of an axis of a spinning symmetrical r i g id  body 

I .  
under the  influence af certain external torques. Pet it uould not be 
r igh t  t o  ignore the sense of the qualitative distinction, conveyed 
by the vexy choice of the wards: precession, coming from tho  smne root 
as "preceden, "proceedu, nprbcession", emphasizes the stateliness, vie. 
steadiness and slamess, of the mDtiong vbile natation (iwan3ng Wdirgf 
emphasizes the disturbance, the unsteadiness, - i.8. pertubatian, ce 
oscillation. Thus, wh3J.e we now f ind  it convenient tfrom the rnathematioal 
point of view) t o  consider these two phenomena separatsly, crrd as being 
on a par, it is essential. t o  keep i n  mind that h m o r i c a l l y  they mwse 
as components of a larger, more camplicatd, motion; and that the pre- 
cession is somehm more fhndamental, the natation being of the nabm of 
a refinement on the pecession. 

In our case the  qualitative distinction is that the  nutation 
emphasises the motion of shel l  a x e  about the vector of angular momentum 
(so t o  say, a kfiematic concept), whFle precession emphasises the motion 
af the m c t a r  of MgJlar momentum about some other d s ,  in this case, 
t rajectorp (a dynamic concept). (XLF concepts of nquaei-mtationn and 
Y~uasi.sprecegsionu serve further t o  crystalUze t h i s  quali tat ive 
distinction. 

% b s e  te& should be acceptable t o  purists: uquasia means "somethhg 
l iken,  and besides, l i ke  "nutationn and 'precessionn ,- is Latin; w h i l e  

"pseudon means Ufalsely  appearing asH, and is Greek. Yet the t e r n  are 
s t i l l  rather vague: quasi-nutation i s  rea l ly  meant t o  be tb essence of 
nutation, and quasi-precession, the essence af precession. 



While the nutation and the  precession, so definod, do not depend on 
the assumption of l idear i ty  of M(6), neither do they giw u s  much help ia 
passing from these two special cases t o  the general (epicyclic) case d * 
yawing motion. Their hportance, however, is vary mch enhanced once 
the assumption of l inear i ty  of ~ ( b ) ,  i.e., the s e e s s  of 9, ia made. 
Then the i r  angalar r a t e s  (and also, as the  more elaborate theory shcns, 
the i r  ra tes  of damping) become independeat of the angle of yaw, and these 
two types of motion become superposable. lomover, they tben becarme 
anormal modesU of motion (vis., not only independent and rmparpoarble, 
but also pmticular ly  simple modes). In fact, tha elegance of the 
mathematical approach ~srounts t o  this: i n  the l inear  theory it is possible 
t o  decompose my camplicated (epicyclic) motion i n  too simple camponearta, 
nutation and precession. 

We decompose tha pau (the aagle froin t o  9) in ao i l k u p s t o  way, 

vio., in to  quasi-precession (the angle from t o  L) Pad q u a a i ~ t r t i o n  
(the angle from - L t o  &), essentially fo r  the masz that  tbsse concepts 

survive in my general, non-linear, theory* i.e.~&nply in the 
vector of angalar momenfum. To describe the yawing motim, we must f o l l m  
the motion of L (as affected by the yaw a d  other factors),  superposing 
upon it the r&atian of the quasi-nutstibat (about tb instantmeaus, 
m a v i a g ,  position of L) a t  the steady angular v e l o c i t y a .  (This is 
equivalent t o  a muneFicd solution of an alternate fern ai th different ia l  
equations of motion). Tbis  decomposition, h e v e p ,  should nrrt k confused 
with the  cast- decomposition of yau in to  nutation and pecassion (which 
is possible only in the l inear theory). The qwi-nutat ion and quasi-prebession 
are not normal modes of motion, are not indepeddent of each other, and a m  not 
constant in magnitude and rate (as the nutation md precepsion are). In the 
epicyclic motion the  quasi-nutatim (if considered separately) and the qnasi- 
precession ddscribn not the simple s p i r a l ,  b~& epicycTes (which, harmer, are 
claser t o  circles tha t  the epicycle af - is ). An additional ebortccoPing 
of our presentation is that fo r  slmly-spbming f&t-stabWed projecti les 
the mag$tude oP both the quasi-nutation and of the  quasi-precession is 
near 90 , and the situation is  smmhat l e s s  vivid, aisce the (amall) yaw 
is effectively a smaU difference between two large puagt~tiea.  

While we spoke of these quantities (nutatton, m o e r l a n ,  ppui- 
nutation and quai-precession), rather l006clly, am nanglesm, t h r y  a m  not, 
of course, simple a~glrs (scalars); ra-$ e8ch one or  them gbsuld 

* Unless we go in to  quite advanced mathematical theory. Becently h H. 
Thomaa (Bal l is t ie  Besearch Laboratary Report No. 839, ?The Theory of 
Spinning Shell", 1952) has introduced - by tbe method of v a r i a t i m  d 
constant. - the concepts of nutation and pmoeasion i n t o  tlw g s ~ r . l ,  
naa-linear, theory. 



properly be specified by two numbers (magnitude and orientation). The 
si tuation is again particularly simple in the l inear  theory, w h e r e  
these quantities are complex numbers, or "planar vectorsn, and are 
conrmutative (the order i n  which they are added is immaterial). Generally, 
these cancepts are not very elementary (thsy are, strictly, qwtsrnians 
or dpdics ) ,  but fo r  our present purposesthey are rather obvious concepts 
of spherical trigonometry. 

The interpretation of the yawing motion in t e r n  of the r o w  of 
one cone upon another, cannot, unfortunately, im extended t o  tlre gemeral, 
non-circular, yawing motion. We therefore haw t o  reso& to the .We- 
mentioned abstraction, vh., t o  consider the motion o f  tb she l l  &do 
A, instead of the  motion of the  r ig id  body aa a whole. The latter - - 
motion can a l w a y s  be visualized subsequently, e i ther  by superposing the 
axial spin (4 upan the motion of - A1, or by constructing the vscta  to - 
from the in&ntaneaus positions of $ and & and (1). 

Let us imagine a sphere of uni t  radius, centered on t he  center of 
gravity of the  shell; the sphere moves with the shell,  but does not 
rota te  ("remains para l le l  t o  i tself") .  kt us view the i n t a r i w  surface 
of t h i s  sphere from its center, an3 l e t  us attempt t o  sketch t h s  relation- 
ship af the vectors based on tha t  center, as it would then appear. The 
directions in space would now map as  points and the angw aa car ta ia  
"straightn l ines  (the arcs of great circles!. On such a Sketch we vill 
bb losing the dist inction between the vectors of certain definita length, 
and the un i t  vectors (which terminate on the surface of the Bpaem, and 
which we distinguish by the subscript 1); thus, the v e c t a  of the d o c i t y  
u of the shel l  i s  coincident with the vector TI, etc. The manner 
i n  which the spherical surface is mapped on our sketches is immaterial 
at t h i s  stage: the surface of our sketches can be iden t ined  with tbs  
spherical surface only when the angles involved a x  maU (M are then 
back in the linear theory), and whenever the angles are not mall* we 
must revert  t o  the three-dimensional representatign. Some of our -8s 
are inherently large: e. g., the vector - M is at 90 t o  both 5 aad &, 
vector 3 is at 90' t o  $, etc.3 it would be awkward t o  represent such 

vectors as points on our plane sketches, but we can readily visualbe 
them as arrovs projected on tha t  par t  of the sphere at which we are 
looking. Since such a projection can be made, so t o  say, in q 
desired direction, the vectors so projected need not be confined t 0  
any p a r t i c g a r  l i ne  on our sketches, but must have only a parti& 
direction. 

Q 

In  exact terminology, the polar vectors (such as velocity and force) 
become axial vectors (such as angular velocity and torque) on our 
sketches. Obviously, we shall base torques on & forces on Ell etc. 



Let us look forward as the shel l  f l i e s ,  i.e., l e t  us center our 
f i e ld  of vision on the point (vectar) Tl; the vectar T_1 does not have 

t o  be horizontal (though it is  easiest  t o  imagine it so). If the 
t r a j e c t q  i s  a straight l i ne  (usually not a bad assumption), tha point 
T1 is fixed i n  the surface af our sphere, and is a very convenient 

point of reference. However, if the trajectory curves or swerves, the 
point T, mwes. T b  velocity of T, is easy enough t o  compute, The  t i p  

& I 

of the vector of (linear) momentum of the shell,  (where n is the 

mass, a d  u the  velocity of the shell),  mwes u i t h  the velocity equal 
t o  the applied total (gravitational ad aerodyaamic) force. Hence, 
that  compnel  of the applied force which is perpendicular t o  'I,, - 
divided by mu, La the (vectorial) velocity af 'El on the  surface of our 
sphere. we should also bear in mind that  the total force may have a 
comp0netlt alw 5 (e.g., drag) which can cause additional effects.  

Similarly, ths  velocity of the  point L (the p o h t  of intersection 
of vector L u i th  the slurface of the sphere) is the component of the 
Cotal applred torque normal t o  5 divided by L (the magnitude of L); 
again, ther, mag exist other effects due t o  a component of applied 
torque along L. It is interest- t o  note that the vector of applied 
torqw must bs decomposed, therefore, along and across L -while it 
is more natural (and in fac t ,  is customary) t o  decomposs it along and 
across 9. 

W e  the vector of cross-spin ?) can bm projected as an arrow 
tangent t o  the surface of the sphere a t  the point %, it is  simpler t o  

- 

use, instead, an arrov representing the  velocity of the  point A1 i n  the 

surface of the  sppre .  In magnitude this is q ,  and i n  direction t h i s  
is, of course, 90 countgcloclrvise (on OUP sketches) from the projection 
of the vactorr) ; and 90 c loch i se  from %. 

I n  order t o  systematize somewhat the forbidding possible multiplicity 
of the  arrangemnts of the points A1, T1 and L on our sketches, l e t  us 

also adopt this convention: l e t  us, as it were, t i p  out head sidewise in  
the plane of yaw. To w i t ,  we shall draw the point % always direct ly  - 
above the  point TI; this ui l l  not mean that  the  plane of yaw is ver t ical  - 
it is just easier t o  imagine it so. A naive attempt t o  dep i c t  the reader 
in tha process of visualiaing an instantaneous motion of a shel l  is 
given in  Figure b. 

Let ua adopt one more convention. With the single point % on our 
sketches representing a l l  possible yaws, we mnst still distinguish various 
possible directions of ' the velocity of A1: i.e., ue wst distinguish the 

increasiDg and tho decreasing yaws (or, an instantaneously circular yawing 
motion); as well as right-handed, left-handed and planar yawing motions. 





On oazr sketches, t o  specify the direction qualitatively it is easiest  
t o  refer  t o  the points af the compass. let us then repeat each sketch 
four (or eight) times, u i th  different possible directions (N, EM, U, SU, 
S, etc.) of the velocity of 2 a .  l e t  us place each component sketch , 
in the corresponding d i rec t i  from the center of the sketch as awhola. ' 
Accardinglg, our sketches w i l l  be arranged i n  the following acheme, 
whereby the instantaneous y a w i n g  motion is respectively: 

increasing 
left-handed 

instantaneous* circular 
left-handed 

decreasing 
left-handed 

increasing increaeing 
instantaneously right-handed 

plan= 

instantaneously circular 
right-hanjed 

decreasing deareasing 
instantaneously right-handed 

plan- 

In order t o  become thoroughly familiar with such a method of presentation, 
let us MM consider an example: l e t  us investigate qua l i ta t ive lg the  mechanism 
of the familiar looped epicycle of a spin-stabllieed she l l  with right-handed 
spin. 

Let us re fe r  t o  Figure 5a, and in particular, commence a t  the instant 
when the instantaneous yawing motion is circular a d  left-hauded. This 
correspond8 t o  the Y sketch, and - as it vill be presently seen on Figure 
5 b - t o  the minirmua of yaw. 

Point L new mast be above %. The overturning torque M moves L t o  

the right, and the situation, obviously, passes in to  that  described on 
the IU sketch. 

N(M the si tuation has very pronounced features of what we shall 
c a l l  mlocal instability". The yaw ( ~ ~ $ 1  is  grouing, and particularly, 

- 

in g r ~ i n g ~ a t  an increasing rate: for, not only is L t o  the r ight  of 
q; but d e b :  the velocity a. $ is  becoming, on w sketch, mare 

nearly vertical; both the quasi-precession and - particularly - quasi- 
nutation are growing, as though stretched, t o  soma extent, by the 
torque M, so that  with the constant angular velocity&of the quwi- 
nutation-the linear velocity of 5 is increasing; finally, aa the  

yaw is grcming, the overturning torque I is &rowing, and also b turning 
t o  the left-, and i s  t h r e w  speeding up the velocity of L ( i t  mlght be 

stretch L, increasing therekythe 
If such a si tuation were t o  continue 

up t o  very high values (which it 



(a) sketches n=,orese;llting possib/e regimes of YQ wing 
mt /on 



indeed would  if the sp in  were too lm, JQ that a= L/B is mall and 
the velocity M/L of L is large). In practice, however, the  si tuation 
(because of sufficiently high spin) rapidly passea in to  t M t  described 
on the  N sketch, and thereafter into that  of the sketch. 

lov  certain inkling of s t ab i l i t y  becomes f e l t .  If the  spin is 
sufficiently great, the angular velocity fi  af qaosi -nutation is  also 
great, and that  of quasi-precession ( e s s e n t i u  the velocity M/L of 
L dirided by the magnitude of the quasi-precessioq), small. The plane 
of y u  then begins t o  catch up with the  qwsi-precessicm. However, 
since the  yaw is still grouing, the velocity PI/L i a  still increasing. 
It is still possible, therefore, that the yaw might not catch up with 
the  quasi-precession (vk., $ might not catch up wSth L). It makes 

only a theoretical difference-if it does catch up eventoaUy, but 
only so  l a t e  that  the  p~ builds up t o  a large m e .  E it fails 
t o  so  catch up (and in pac t i ce ,  if it catches up too l a t e ) ,  the  she l l  
l a  unstable. Note that  throughout t h i s  NE regime t h e  magnitudes of 
the quasi-nutation and o f t h e  quasi-precession continue t o  grow. 

Generally, hwever, $ catches up with L, and the t i t u a t i m  
passes in to  that  af the E sketch, i.e., an instantaneous right-handed 
circular yiruing. The quasi-rmtatian anl the quasi-ecesaion n w  
cease their g r d h ,  It is n w  that  the s t ab i l i t y  of tb shell is 
finally and truly manifested; i n  fact,  it n m  becom~s of in teres t  t o  
formulate the quantitative relations u n l e r w  the  s t a b i l i t y  ( t h ~ s  
we sha l l  presently proceed to  do). 

T h e a f t e r ,  af course, the si tuation passes in to  that represented 
by the SE sketch; the yaw, the quasi-nutation and the quaai-precessim 
begin shriaking in magnitude. This continues through the  regime 
described by the  S sketch and into that  of the 5W sketch; after which 
L wertakes again, and the  si tuation passes in to  the U sketch again. 
Throughmat the  SE, S and 5Y regime the kinetic energg due t o  the  cross- 
spin qis  being converteU into  the potential  energp of yaw, as the shell 
is brought, against the overtarning torque, t o  face mme nearly into 
the wind. Thereafter the  potential energg slips back (in the W, N ard 
WB regimes) in to  the  kinetic energy of cross-spin. 

A t  this stage we do nut care (as yet)  t o  assert t ha t  the s h e l l  
returns t o  i t s  miginal angles of yau and t ha t  the motion haa a periodic 
character - even tholtgh t h i s  is indeed the case once our aswunptions 
are properly crpstallized. I n  r ea l i t y  the re  &st a rmmber of conplicating 
factacs. T h s ,  the successive loops mi& become amallen, and ewmtually 
become cuaps; the  epicycle then becomes a nrosette@, then a wavy circle,  
and finally passes in to  a pecession similar t o  that dedcribed above. 
Cr, the  loops bgh t  grow; the epicycle would then pwg tP* T1; 
thereafter the  loops would encircle T1, become more nearly l i ke  coincident 
circles, and the passes into nutation. Again, the epicycle 
might shrink (or its shape. What matters fo r  our present 



purposes is tha t  this ,  rougliiy described, mechanism of the motion survives 
in any case; and tha t  any changes in the motion of $ can be accounted by 
the changes in the  motion of L and TI. 

Concept 

A t h e o q  of yauing motion of a she l l  is essential ly the theorp &' 
dtab i l i ty  of a shell. While much has been written on the concept d 
&ability, the si tuation still s e a  unsatisfactary in spots. The vord 
conveys an idea that  is mcessary and useful, but opgae and having many 
ramification.. The tradit ion of mathematical approach demands tha t  the 
word be associated with a definite quantitative m i t e r i b :  for instmad, 
the s h e l l  i s  considered ( in  the l i n e a r  theory) stable ( in  a c&&n same) 
if the soocdJ38dnstability factmu is great@ than 1 (and.then again, it 
can be less than 0 - and also, s l ight ly  less than 1 for spin-stabilleed 
rockets). The trouble ie, there are so m m y  ramifications. We haw, 
f o r  instance, the  s t a t i c  s t a b i l i t y  (fin-stabilization), mosoopio 
s t ab i l i t y  (spin-stabilimtion), dymmic s t a b i l i t y  (the requirement that 
both precession and niltation are damp* out - distinctly a concept of 
l inear  thecry); aanyirge~Laus combinations of these requirements are in 
me. The sub jed  of the tralliag of the shell+ obviously, ia an  aspect 
of s tabi l i ty .  Accustomed t o  thfnking in terms of the line= thewy ve 
are w m t  t o  take it for granted that  we can separate the/ pueatian of 
s t a b i l i t y  from the qusstian of' fhe magnitude of' yeu (that. is i n  effect  
dismissed aa a question of the constants of integration)$ but it ia 
wkward t o  speak of t$e s t a b i l i t y  of a sha l l  which is per fombg a 
steady nutation of 85 a m p l i ~ n d s ,  ani  it is unfab t o  ape& of the 
irurtab&liiiy 8f a she l l  which i n  its whole trajectory change@ its yaU 
from 1 t o  2 . L.1 the --linear theory the concept of &ability b 
comes dependent upon (ide., inseparable f m m )  the magnitude of yau 
and other initial conditions. In the mme admmed t heo rbe  then, 
d s t s  a need far still other s t ab i l i t y  criteria, that haw a& UI 
yet been formulated. T b ,  in fad, the conplcdtr of tbe problem 
defeats the good intention of making an intuit ive id08 oomcrete. 

We feel ,  nevertheless, tha t  t he  in tui t ive  idea Df artatduty af 
a shell is prim to,  and independed of, ell quaat i ta t im criteria. 
We therefore propose tha t  the essence of' the cmept of staMUts ia 
a prediction: an assurance that  the yax will not reacrh large valws. 

Naturw,  a prediction can he only as good as the information 
on which it is based* If - l i k e  a Mamell demon - ue kw Utarsllp 
all there is t o  knw about the she l l  a t  a given instant we wvould Burely 
be able t o  predict exactly the behaviour of the she l l  for the  redader 
of its f l ight .  The more &arced theories of exterior ba l l i s t i cs  caa 
do no @ore than attempt t o  approach this situation. The linear theory 
obviates the difficulty (of our ignorance) by the simple -die& of 
resorting t o  clearly specified assumptionsg it i o  preoisely t h i s  
apparent ambition of the l inear theory btbich givea t o  the student of 



bal l is t ics  the false hope that a complete prediction is possible (and which 
leads t o  the  natural - a d  a t  this time apparently well-entrenched - demand 
that  any theory give a complete prediction). The fact is, the accuracy, 
and th saretg, of a prediction depends upon the range (sw, the interval  
of t h e )  t o  which this prediction i s  t o  apply. Ia moPt practical  cases, 
probably, the linear theory can give an excellent prediction for, say, 
several periods of yaw (e.g., a linear-theory epicycle can be f i t t e d  t o  
well-nigh every s t re tch  of sevexal peripds of yaw). For a t i m e  interval  
of, say, one eighth of the period of quasi-rmtationthe reader can make 
a fair prediction simply by riqualleing me of our sketches. But in the 
very general case (say, a hi- complicated force eyetern) a good predictian 
can be made only for a verg short time interval. 

Wat, then, is the  meaning of stability? Cb2ously, it must be *d 
in relation t o  the  length of time t o  which our prediction w i l l  apply. We 
mqp speak of 'localn (instantaneous) stabil i ty;  af, s q a  'short-rangen 
s t ab i l i t y  (the assurance that, if the yav is increasing, the increase u i l l  
come t o  a stop ard w i l l  be followed by a decrease); and finally, of variorra 
degrees of "long-rangen s tab i l i ty  (an assurance that the subsequent m g h i m a  
of yaw - secod,  third, perhaps huadredth,will nut exceed a specified number. 

In the regimes of SE, S and 9J sketches the local s t ab i l i t y  i s  inherent 
in the i n i t i a l  conditions: tha yau is decreasing. In the regime of IM sketch 
the s tabi l i ty ,  even if it does exist i n  some sense, is no+ manifest. Even 
if tb W regime passes into  the NE regime, tb s tab i l i t y  is not certain; 
s t ab i l i t y  can be implied only by the assurance that  the motion w i l l  indeed 
reach the si tuation described by the E sketch, when the point $ r o U ,  so 

t o  say, over TI. Let u s  nai  inspect, quantitatively, the si tuation at such 
an iastant. 

ht, on the E sketch, t h e  magnitude of yaw ($T~) be 6, the magnitude 

af pnasi-nutation (5) be $, l e t  I be positive (spinstabi l lzed shell)  and 

l e t  TI be stationary (recti l inear f l ight) .  The velocity q af $ is.fL sin$, 
or ( ~ b ) s i n $  (cf. equation (2)); the angular velocity of % abut, TI is 

Q 
(L/~)sin$/ain6. The velocity of L is M/L; the angular velocity of L 
about T1 is (M/L)/sin(6 - $). The s t ab i l i t y  requirement i s  

and (siace in this example M i s  positive, and no angle exceeds n), c m  
be written a 

where N is  written in the f om which remlads ua t ha t  it i s  the fuuction of 
of 6. This is the s t ab i l i t y  factor relat ion in a generalieed farm (although 

* 
Generally, it is bos(L,B)/L (df. Fig. k ) ;  but for tb E sketch the 
(L,B) is zero. 



the left-hand - side of this inequality is not necessarily the s t ab i l i t y  
factar,  as sha l l  be explained presently). 

For the sake of both simplicity and check, l e t  us rever t  k i e f l y  t o  
the assumptions of the linear theory. (because of t he  smallness 
of $ - cf. Fig. I), M = @ (p  a are e m  t o  the i r  
wgles; (3) becoll~s 

The product ($16) ( 1  - $/6) has a mximm value of a, occurritg at 
$ = 6/2; even with t h i s  $, there remains t o  be s a t h f i e d  ths  inequality 

(3" 

which is the definition af the s t ab i l i t y  factor s. The phpieal significance 
of the s t a b i l i t y  factor i s  thus particularly simple: far a given combination 
Df A, B1 5 and p, the s tab i l i ty  factor is the maxlnmm possiUe r a t i o  of the 
angular velocity of the plane of yaw t o  tb atgular velocity bf qua6i-pre- 
cession. This r a t i o  occurs only at very particular cdrcumst6ir&es; at the 
m e  of yaw, and when the vector of angular momentum bisects the angle 
af p i .  It is a t  these circumstances that the s t ab i l i t y  is  most clearly 
manifested. It is interesting t o  note that the epicycle of tb l b w ~  
theory i n  these circumstances passes through the origin; i.e., this is 
the familiar case result ing from the  i n i t i a l  conditions 6 - 0, d6/& 0. 

Given sJl,  (3') can be sa t is f ied not o d y  a t  fd - 6/2, bat lrlso 
in a c&ah neighboring range of $. A t  the extrems of thia range (3') 
is barely sat is f ied,  i.e., becomes the equality 

b($/6)(1 - $16) 1, 
which can be reur i t t en  as 

($/612 - (@/6) + 1/Ls = 0, 

and has the two solutions, 

= ( 1  = ( 1  + 6)/2, s.y, (3B) 1 2  I - 
These two extremes are, of course, nntation and wecession. In 

nutation L is closer t o  T1, or $/6 is more than 1/2; $ moves fast 

because of the large 9, and L Just  barely keeps up with $. h 
precession L is closer t o  9 and,because of the small $, A1 mows 



only slouly, and just barely keeps up with L. The instantaneous motion 
of the body in both cases is rotation about m a t  the same angular velocity 
cu; or, the motion of A .  in both cases is rotztion about - L a t  t he  same 

angular velocity&. But the reader should remember tha t  these angalar 
velocities describe the rotation (of the body, or of the nvectarn of quasi- 
nutation) about the instanta&ous (i.e., stationary, as it, were) position 
of m and L, and tha t  the points m and L are moving. The situation is 
simple enaugh with quasi-precession (L mwes with velocity Mh), Q. with 
the rotation of the body ( i t  i a  rolling), but with regard t o  the quasi- 
nntation the s i k a t i o n  is not quite the same sort of thing for which one 
ia accustomed. The concept of the angular velocity of the qrwri-nntation 
could have been introduced as the angle between tuo subsequent poaitiona 
af quasi-nutation divided by the time increment;', this was not done 
because such an angular velocity would not be the sane aa the constant a, 
and would not be ae convenient3 d5fferent such velocitiee can be produced 
by the saef i .  

The va rh t ion  of the shape of epicycle in the range (1 - d)/2 
( $/S4(1 + 6 ) / 2  is  very interesting. 12 we decrease P1/6 helm 1 / 2 ,  the 
loops begin t o  miss the center, become sm-, and epieycle passes throngh 
a rosette t o  wavy ci rc le  and into precession; if we inorease $/6 were 1/2, 
the loops start going around the origin, increase, and the epicycle passes 
in to  mttation. In either case, the variation af the magnitude of yan 
diminisheis, unt i l  it finally disappears in the corresponding circular motion. 
T b  the rapid variation of the magnitude of yaw (as i n  the epicycle 
passing through the origin, with @/6 = l / 2 )  in a token, or a manifestation, 
of stabili*. 

Cutside of this range of $/S the inequality (3') is not satisfied,  
and the s tabi l i ty ,  even if it does exist Fn wme sense, is not marrifeat 
in the regime of the E sketch, This sketch then represerrts a miniaaum, 
rather than a mazimum, of yaw. With the smaller $18, the epicycle uill 
be a navy c i rc le j  u i t h  the larger $/el the resultant epicycle w i l l  loop 
wer the or-. 

A very important borderline case is  tha t  of s = 1. Fi-ecession 
and nutation then merge, and a bare manifestation, ar a ninimum, of 
s t a b i l i t y  (vis., circular becomes possible; and that, only a t  

* 
In fact ,  ia the l inear  theory, when nutation is considered a vectorial  
component of yaw, this is exactly hou the an&= velocity of nutation 
is defimd; it is useful there, for such angul~r velocity then happens 
t o  be constant, Presently, when we sha l l  relax the amaumptiam af the 
stationary Tl1 we shall me& the same diff icul ty  u i tk  the quasi- 

precession. 



the most advantageous codi t ion,  $/6 = 1/2*. Note that  such motion is 
s t i l l  possible at all (smal2) angles of yaw. 

More General Cases 

With th i s  understanding of the skeleton of the nshort-rangeo (in 
Ws case, gyroscopic) s tab i l i ty  we m y  relax our assumptions d l ineari ty,  
and return briefly t o  the more general problem, i.e., t o  (3). Nw we 
have more exactly (subject, of course, t o  other assumptions here implied) 
L = %/COS$ (cf. Fig. l ) ,  and M = win6 (where eo defined ia not 
necessarily a constant, but is certainly more nearly so  than M). Then 
(3) becomes 

2 2 
A 9 sin sin( .- 3 1, 

cos $sin 6 

2 2 
which we sha l l  write ., aa rn sf ($,GI >/I, with a n  A %/LS&(6) and f s 
~h$ain(6.~) /cos '$s in~6.  While (b) is  s t i l l  similaz. t o  its line* 
analog ( 3 1 ) ~  the important difference is that with the larger  angles the 
trigonometric part of ( b ) ,  or f/&, can have values greater than 1/L, 4 
the s t ab i l i t y  requirement is therebJr made l e s s  skigent. 

Tbe very interesting function f ($,PI Is given, as a contour plat 5zt 
the ($,5) plane for  0<$<6 < 4 2 ,  on Figure 6. The moat wortant region of 
th i s  surface Is the region of  s m a l l  $ and 5, wbre  the two contour Unes of 
f = 1 merge; this is the domain of the l inear theory. In this region the 
function haa a practically horizontal crest, or watershed; t b  creat 
extends, aa a razor wedge, right t o  the point $ = 6 = 0, which represents 
a steady nose-on f l ight .  However, on the boundary 1hss radiating from 
themigin the function is  zero, and the  manifestation of s t ab i l i t y  i. 
impossible. In part icular ,  the absciaaa ($/6 - 0 )  represents the 
si tuation when the axis of a spinning she l l  is momentmily s t a t i o n q y  
(as in the .cusp of a rosette) ,  a& L is sueephg across the plane of p. 
The u0 line, $16 = 1, represents t& situation when L m e p s  aoross 
the trajectory, a d  therefore rotates a t  an inf ini te  angular velocity, 
aa it were, about the trajectory. In the linear region the cres t  Pies 
along the l i n e  $/6 1/2; on the extension 9f t h i p l  l i ne  (uF@ah, fer 
moderate yaus, is  not far from the t rue  crest) the  function has the 

I 
I Y 

The mathematical l inear  theory shms that  when two independent solntiona 
merge in to  a single one, as  here, there arises, as the second possible 
solution, the nsecularH solution; in th i s  case, it is an expaadjng 
Archimedean spiral.  When s becomes less than 1, both t h e  cfrculm and 
the  Arcbimedean solutions pass into 1oga r i tWc  spirals (respectively, 
shrinking and expandhg). The blend between various types of solutions 
can be inspected as a matter of initial conditions (constants of 
integration). For instance, with arbitrary initial conditions and with s 

1 .  barely aver I,, the NE regime wi l l  be very long, and the maximin angle 
of yaw very lqrge; with s of 1 or l ess  the NE regime w i l l  contizme u n t i l  
the yaw reaches values so great that  the l inear theory no longer applies. 
We have avoided such d i f f icu l t ies  by the simple device of considering 

I 
only the initial conditions of the E sketch. 





value vcos4(6/2), which (for these yaws) ia only slighrtly ~~ t h m  
l/cos6. 

The point # = 6 = n/2 represents a pure cartwheeling of the shell,  
i.e., cartwheeling without any axial spin. A t  this point the functian 
f may have aqy value from zero (since it is on the l i n e  #/6 = 1) to  
infinity (since it is  also on the l i n e  6 = n/2, uhich represents the 
cartwheeling of the  axis of the  shell, and on t h b  l i ne  f becomer simply 
4 t 4 ) .  Indeed, a t  such conditions manifestation of s t a b i l i t y  rather 
loses i ts  me-. 

It w i l l  be seen tha t  the true cres t  of our surface appoaches thia 
*inf ini te  peaP (the singularity) in a rather deviow way, f i s t  going 
outside of the l imits  of the tr iangle O< # < 6 < n/2 .  It Ss important t o  
note, houever, that  t h i s  #pe&' can be reached without going outaide of 
th ia  G.iengle j S.e., all values of f are represented in thin triangle. 
T h i s  means t ha t  fo r  any she l l  which is  unstable in the linear-theozy 
sense there may edst combinations of # and 6 such tha t  this shell u i l l  
still manifest s tabi l i ty .  

The s t a b i l i t y  condition can then be visualizd as fdJlmrs. For a 
given s (which ue may now term Qinear stabSlity fact@ ) we mey imagine 
on Figure 6 a point w i t h  map coordinates $ and 6 and a t  the height l/s. 
If th i a  point is above the f-surface, the s t a b i l i t y  conditfon (b)  can not 
be satisfied (the regime of the E sketch, even if does &sf jnatantaneous~,  
can not continue, and wi l l  pass i n t o  the r e g h e  of the NE eketch). If thSB 
point is i n  the f-surface (on the contour l i ne  f = l/s), the circular psvbg 
w i l l  continue (the stability is barely manifested). If this point is under 
the f m f a c e  (inside the loop of the contow line f l/s),  the s t a b i l i t y  
is c lear ly  manifested ( the regime of the E sketch w i l l  pass inCo that of 
the SE sketch, and the  yarr w i l l  presently start decreasing). 

NaturaUy, the possible c k c u l m  yawing regimes might be divlded 
(sw, by the crest of the  function f )  in to  thoss of mta t i an  a d  prsoersion; 
the rates af nutation and precession can thus be computed, e i ther  am the 
ra te  of the plane of yaw (~/~)sinfd/sin6, or as the  rate of the -5- 
precession (Nfi)/sin(G - $1. We may therebg relax 3w %he reqPfrrnaent 
(mentioned abwe as a matter of convenience of  the^ presenttitioat) that M 
be mall. These rates, Me-, are no loager ladeperdent of  U26 in i t ia l  
conditions (the magnitude and the angular rate of yaw). lbrewer ,  these 
two regimes are no l q e r  Figure 6, by the regime of the 
circular yauing motion of (as they are in the l inear 
theory); rather, nutation and precession can n m  be blended a m r a  the 
cres t  of the f-surface. The mult ipl ici ty of possible Bolutions in the  
region of this blend corresponds t o  t he  fac t  that  in the  linear theory 
a barely stable she l l  may yaw circularly at all ( m a l l )  wgles of y.v. 

It may be noted on Figure 6 tha t  the true crest of the f d a c e  
does not represent exactly the xnhimm values of 6 at vhich a given 
l inear i tpunstable  she l l  may manifest i t s  stabil i tg.  The hi&estit& 
question of wha t  these values are has a p a r t i d a r l y  simple ~ n ~ ~ e r :  
t h e  locus of the minima of S cd be found by finding the marima of f 



in the planes of 6 = constant. The $dependent p a d  of (h) can be written 
as 

2 sh$(sin6cos$ - cos6sin@)/cos @ = cos6 tau$ (tan6 - tan$), 

which is of the form ax(b - x ) ,  and has a maximum a t  x b/2, i.e., at 
tan$ - (tan6)/2, Thus, the vector of angnlar momentum then bisects the 
tangent of the angle of yara erected on the axis of the she l l  (Figure 7a), 
rather than the angle, as i n  l inear  theory. This locus merges, of course, 
vith the l i n e  $/6 = 1/2. A t  these conditions the value of f is sbp 
l/cos6. Therefore, the generalLzation of the s t ab i l i t y  condition (3' 
of the l inear  theory i s  

P 

with the proviso that  a t  the c r i t i c a l  6 s t ab i l i t y  be manuested 
only if the yawing is instantmeously circular a n d 7  has a particular 
value. This proviso corresponds t o  the  fact  that  in the  l inear  theory 
a barely stable shell may manifest s t ab i l i t y  only a t  particular initial 
conditions, via., a t  @/6 = 1/2. 

In fact,  in advanced tex ts  on ba l l i s t i cs  the s t ab i l i t y  factor is 
defined with cos6 in the denominator, i.e., as the  left-hand side of 
(hl)  rather than by (3"); we might then speak of the *nm-line@ 
s t ab i l i t y  factor. Zlrlshguite a different thing from our l inear s t ab i l i t y  
factur, and no longer can be viewed as a definite property of the shell, 
independent of the initial conditions (as the linear s t ab i l i t y  factor 
is usually considered); rather, it should be viened as the maximum possible 
r a t io  of the angular velocities of pew and quasi-precession, 

The  requirement of a sufficiently high yaw (6) may be interpreted as 
a reqnirement*of a sufficiently large quasi-mttation ($) and a sufficielltly 
large quaai-precession (6 - $1. It might complete a certain symmetry of 
our arguments if we inquire, briefly, if l o c i  of such minima &st. In 
fact ,  t h e  hcua of minima of $ is qui t s  pronounced on Figwe 6; it exists 
from the b a r  domain t o  6 of same 56 . Its equation is tan(6 - @) = (tan6)/2; 
i.e., for  s t a b i l i t y  $ nnrst  be sufficiently large a t  l eas t  t o  bisect the 
tangent of the angle of yau ereqted on the trajectory (Figure 7b). For 
larger S this m e  wpresents the maxima, instead of the minima, of $ on 
the contour l i nes  of f. T h e  locus of the minima of 6 - $ is -ely 
noticeable in the region from the linear domein t o  6 of some 25 , and seem 
t o  be of no particular interest.  

The nseFulaess of the s t ab i l i t y  factor lies in its relat ion t o  the 
nutatioaal and precessional rates. In the mar theory these r a t e s  are - 
from (2), Figure 1 and ( 3 ~ )  - simply 

+ For any s < 1. 
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For q cbcn la r  motion the non-linear analog of ( 3 ~ )  can be sham to '  
be 

so that  the analog of ( 3 ~ )  is 

and the c i r c u l ~ ~  ra tes  are 

%z?e 
The faregoing discussion was mainly the r e c i t a l  of the more interesting 

conclneions from the theory of spinning top - for which case the assumptiom 
of a constant p is particularly justified. W e  the analofg bebeen the 
s h e l l  and the top is quite traditional, a comparison bebeen the l inear  
mathematical analog and the  everyda~r experience with a top ia met rather 
l e s s  frequent*; such a comparison might be rather illuminative, 

In the actual  t o p  the nutation damps out d r e m e l g  
processes of uhich more anon, in connection with Hagnus 
im practice it is observed seldom if ever. The precession also dampa 
ant quite rapidly; both the damping and the angular ra tes  af precession 
are readily sensed when we see a hard-spimhg top right i t s e l f  and .go 
t o  sleep". Y e t  the read= w i l l  recollect that  the top often fails t o  
r ewh  the sleeping position, and continu& a rather steady aprecession~; 
also as the spin of a sleeping top is dying out, there invariablp develops 
the same, relatively slm, precession - which speeds up as the  
jncreases, just before the top falls. These familiar @ s t e w  motiona, 
apparently, are not the pecession i n  the customary ballistic sense 
(which i s  a resul t  of disturbance e ~ r e s a e d  by a solution of a 
homogeneou dif ferent ia l  equation!; rather, they are the motions of a 
h a r w t a b l e  top, whioh is barely stable (has the  nan-linear 
s t a b i l i t p  fabtco. a h a 6  of 1)  a t  the given angle of yiar, Bqy oacil lat ians 

I 
ntly peculiar behadour of the Last expression in (6) at 

be readily accounted for by inspecting the legitimacy of 
our mathematical manipulations a t  this 6. The precessiomal r a t e  
(which w a r e  indetEoacinate) then is simply Pytan$/B, f .er,q, That  
the  nutational r a t e  is not infinite can be seen as f o l l a l r i  *am 
( 4 ~ )  ar Figure 6 it is seen that  nutation a t  6 a n/2 is possible only 
if $ 0 4 2 ,  i.e. i f  the axial spin (4 is zero, and the appaxently 
indeterminate (4 j  then aauaunts,to 17 again, - with the additianal 
provieb that  if the motion is t o  be circular, as assumed, M nust be 
zero. The t r i c k  difficulties of tbis kind are impected best by 

the physical significance of the  problem (e.g., Figwes 2 
=ather than tb rgltiu~ of &@&a. 



of this angle rapidly damp out, apparently by processes slntilar t o  
the damping of t he  ba l l i s t i c  nutation a d  precession; in case the 
non-linear s t a b i l i t y  factor is l e s s  than 1, the top merely builds up 
its yaw till it is  non-linearly barely stable a t  some lar er yaw; the  
speed-p of the precession (h spi te  of the decrease of 9 f just before 

the top fa l ls  is the consequence of the presence of cos6 in the denominator 
of (6). Thus it is the nsuaUy-neglected bordez-line case of the lfaeaf 
theorg., r a t k  than the theoretical  epicycle, which is the ancestar of 
the c a r m o ~ b a e r v e d  motions in the non-linear regime. It i s  extremely 
easy t o  c&se this motion of non-linear r e g h  with the ballistic 
( l inear)  precession; i.e., t o  consider it, erroneously, a matter of initial 
conditions. A shell with an insufficient l inear  s t a b i l i t y  factor m q  
not exactly utumbleu; it i s  s t i l l  nstableW i n  9r sense. It is just that 
its yaw is uudesbably large. 

In the t radi t ion of mathematical approach the s t a b i l i t y  cordition 
stands somehcw apart from the solution; although it is understood tha t  
it is also a kind d a short-cut sulmnary of the character af the solutim. 
We interpreted the s t a b i l i t y  condition as an attempt at the prediction 
(i.e., the solution) i t s e l f ;  and we found tha t  a consideratian of an 
Instantaneous si tuation may, in a number of iraportant special cues ,  
Jrield a modicum of a lon-ange prediction. We avoided a quantitative 
diacnssion of the  loca l  s t a b i l i t y  (vie., of the  question whether a p e -  
diction f o r  a short length of time augurs well or 111 for the decrease 
of yaw); m d  discussed quantitatively only the  short-range s tab i l i ty ,  
which is, as it were, the local s t ab i l i t y  a t  t he  instent of the Mrst 
m&mm of yaw. kt t o  get t o  the first maximum of yav from arbi t rary  
initial conlitiom, as  w e l l  a s  t o  get from the first m&mm t o  the 
second, third, etc., is a different,  and a mme dimcult ,  p r o b h ;  
in fact, t h h  i8 the problem which has been solved ani lyt ical ly  
in the most simple cases (such a s  tb l h e w  theory, or the case af 
the M-tozque acting alone), and which requires, gener-, modem 
high-speed computing machinerg. 

In the  =ear theory the general so lu t im  i a  obtained by the  ' 
sqperposition of the  simple nutation an3 precession; snd the mpm- 
position arises naturally, as  a property of solutions of a linear 
d i f fe ren t ia l  equation. A s  a matter of a mere exercise, or of an 
inquiry hcw far we can go without calculus, the following interpretation, 
or a derivation of the superposition might be of insterest.  

For any paw 3 (which in the linear tbeow i simply a complex 
number) there exist hloptasjhb lutes, mdf,, d which the 

motion would be the simple (circular) mot&; for* each one of these 
possible ra tes  the given mist  be decomposed in to  quasi-precession 
and quasi-nutation i n  a definite way - which, as we have seen by (N), 
is independent of 1 . The actual  instantaneous r a t e  f af 3 , generally, 



is neither one of these. Now, two complex numbers, Cn and Cp, can ea s rm 

be f d  suchtha t  Cn + C -1, and - c n I n  + C p i p .  Obviously, t may P 
be decomposed into Cn and C p l  ; a brief geometrical or algebraic con- 

sideration, detailed on Figme 8, w i l l  show that  the quasi-uutation and 
quasi-precession may be decomposed similarly (e.g., on Figure 8, 
QP = C QP + C CAP ); the vectors QPn and QP are desiHated on Figure 8 

n n  P P  P 
by L,, and LD. Alsqthe projected vector of the torque M may be 

decomposed in the  same way. 

law, it does not matter which component of torque a d s  on which 
component of angular momentum, as long as  the t o t a l  M_ acts upon the 
total L. Furthermore (but this holds only in the l inear  theory), it 
does nzt matter how the -nutation is decomposed. All of its 
components are rotating the corresponding station+ry positions 
of L) a t  the same angular velocity A, and the velocity I. ( o r q  ) of % 
is, in q case, the vectorial  sum of the velocities produced by tb 
components of quasi-rmtation. We therefore can assign, arbi t rar i ly ,  
the following relations. Let the torque produced by the Cnc component 

of yau affect  the  C n a P ,  component of quasi-precession QP; and l e t  the  

angular momentam component, represented by that  component of quasi- 
pkecession, produce - by means of t k a  corresponding component CnQNn 

of quasi-nutation QI - the component Cn in of I; with similar r e l a t i om 
-. .. 

hold*, of course, among the components with the p-subacript. We can 
then note tha t  among the components u i t h  each subscript the motion is 
known, i.e., predictable, circular motion. Therefore the C t s  w i l l  
remain constant, and the general solution is  a superposition of precBssion 
and mtation. 

While this intrepretation is part icularly obvious in a highly 
simplified case ( r e c t i l b e a r  f l ight ,  constant velocity, only M present), 
it is not v i t i a ted  if we pass t o  the general ( l inear)  case. g e  need 
only t o  re-label the componente Cn ( and CD ( as Cn [ ,(t and cn 1 D(t )  a 

.. .. 

introdace the yaw of repose and the more kuiplicated system cf tr&ues 
and forces. ( a l l  of which, hmever, must be l inear homogeneous functions 
of r and 5 ), introduce the motion of T1, etc., and re-trace the 
argument more slwly and more laboriously. In fact ,  the ccanponent 
motions (,(t) and cD( t )  may be quite complicated: e.g., such parameters 

of motion ae axial spin, velocity and s t ab i l i t y  factor  mayQall change - 
provided they change in the same way for both < and t P 

%he latter requirement rules out, in the l inear  theory, such phenomena as 
ins tab i l i ty  of spin (E2LL 668), cases when the y a u d a g  affects  the trajectory,  
etc.; those are domain of non-linear theories. It is not quite i d l e  t o  remark 
tha t  the component motions need not even be precession and nutation ! They can, 
equally well, be any two l inear ly  independent epicycls .  Such procedures are 
indeed aften resorted to, when miow linear  perturbations of f l i gh t  data  
must be carried out. 
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Fjg 8 Mechanism o f  Superpos;t~on 
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b e  tb superposition is accepted, such fac t s  as  the absence af 
damping u i th  El alone acting on the shel l  (and u i th  M being a function 
of 6 alone), & well as the complete prediction of motion, folluit 
readily. In this connection it is well t o  note the dist inction betueen 
the dynamic and the long-range stabil i ty.  Considar a shell whose 
nutation damps rapidly, but whose precession grws, albeit very slauly. 
In the clean-cut tradit ion of the mathematical approach, such shell is 
automatically classified as  cipatnically unstable. Our approach seems 
(in that  case) more tolerant, or more nearly attuned t o  the reali ty.  
If the initial yawing motion i s  mostly nutation, we would say this 
she l l  has a long-range s tab i l i ty  for s o - m q  periods of paw, or that 
the ins tab i l i ty  would not be manifested u n t i l  such-and-such range, or, 
again, that the  s tab i l i ty  depends upon the manner of launching. This 
is certainly no different from what would usaaUg be done: it is just  
that  our "long-rangeu s t ab i l i t y  corresponds t o  the final calculatiom 
of the l inear theory - or, t o  proof-firing results  - rather than t o  
the abstraction of dynamic stabil i ty.  

An attempt t o  systematize the resultant possible mdltiplicity of 
epicycles is  given on Figure 17. It is amusing (and from oar %an- 
mathematicaln point of vim, chastising) t o  observe that  in practice 
the  simplest way of drauing these curves has been t o  constrvd t h e  
appropriate differential equations, t o  compute the appropriate initial 
conditions, and t o  solve theae equations numerically on an electronic 
di f ferent ia l  analyzer (a). 

Even allowing that  the general non-linear case is not solvable 
enalyticallg, it is of interest  t o  inquire w h e t h e r  there might not be 
some simple non-linear cases, e,g., in the case of ?f act* alane, and 
being a function of 6 alone. Un&artunately, the t g o r y  furnishern no 
simple arrd usef'al auswars there. Even i f  we are t o  prove the very 
relevant f a d ,  tha t  the yauing motion in such a case is not W d ,  it 
is d i f f i cu l t  t o  keep up our pretence of avoiding the calculus. 

kt us nw inspect the consequence of  the various components of the  
force system act* upon the shel l  - qualitatively in the general case, 
and quantitatively in the l inear case. 

* 
This work was  done by Mr. E. E. b b e r g e r .  

%+ 
Aa was mentioned before, the general solution has been worked ant, 
but ie cumbersome. In the case of spinning top (constant the 
solution is  in terma of e l l i p t i c  integrals. 

3# Yet we might attempt t o  outline the proof, very roughly, as fo l lma.  
Since N is perpendicular t o  the shel l  axis, the axial spin cannot be 
affectyd; and since M is perpendicular t o  trajectory, the companent of 
L along trajectory cbot be affected. It can bzthen shovgthat since 

depends upon 6 alone, there exis ts  a potential e n e r a  of yau, and 
therefore the system is what is known in mechanics aa conservative; 
and such systems, generally,possess constant t o t a l  energy and represent 
oscillations "tn a potential well", with constarrt amplitudes. Such 
v a s e  'reasoningH is not without its legitimate.- in bal l is t ics ;  
in fact ,  it is more logical than,for instance, an'insistence on a 
large s t ab i l i t y  margin of a mortar shell! Thie intuit ive groping f o r  
"constants of motion" can be recognized as a primitive form of the  
Hamiltoxxian mechanics. 
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FORCE SYSTB CF BALLISTICS 

In recent years the fact  began t o  be recognhed that,the force systems 
ueed in exterior ba l l i s t i c s  were rather wersimplificaticma of reality.* 
Nevertheless, for practical  purposes an idealfeation is, of course, in- 
diepensable; it is just  that  a realizat ion of just wha t  ha8 been assumed, 
or taken for grmted, must nor be lcept in mind more praminently. 

The first r e s t r m i v e  asmunptim i s  t h a t  of Synge's aerodyaradc 
hypothesis: tha t  the force system (viz., t o t a l  force and t o t a l  torque) 
can be specified by speciPying the vectorial  velocity arid angular velocity 
of the shell? The next svstematiaation is the Ma~le-Ssnee analpsie of the - - 
c o n s ~ u ~  of the symrc-eG of the shell.' ~his'sptematizati'an is 
particularly useful in investigating the border-line between the linear 
and n o n - G a r  theories. It restrGt.8 somewhat the number of possible 
non-linearities which ought t o  be considered. The w ~ s s  of this 
systemafbation in the general nan-linear regime is, mfortnnately, 
limited, far two reasons. It Lt difficult t o  design experiments 80 
tha t  a l l  probably relevant Maple-Synge coefficients can be measured; 
and even if they uere, the mathematical u t i l i za t ion  of them would be 
extremelp laborims. 

There are two knovn ways i n  which a fw the r  necessary simplification 
of FapleSynge theory may proceed. The most important one, af course, 
is the linearizution -of the Maple-Synge theory. Thia excludes a number 
of coefficients which are hm t o  be relevant, and includes sane whose 
relevance seem rather marginal. The most elegaut feature of tb linear- 
ier t ion scheme ( i n  addition t o  the fact that  it dovetails with the super- 
position of the l inear  theory) is t h a t  it furnishes a convenient coordinate 
system for decomposition of the force system; forces and t o r ~ e a  dependent 
upon 6 are decomposed a lmg  and across the plane of yaw, and those dependent 
upon are decamposed alang and across the m e w s  of r) i n  aur sketches. This 
gives r i s e  t o  the well-barn Kelley-McShane matrices of forces and t o m a ,  

i t  
80 that a number of extant ba l l i s t i c  texbs niw appear, in'retrospect", 
rather didactic. 

w This ~ ~ i ~ n  seem t o  be rather .peculiar t a  bal l i s t ics .  In  the 
advance# aeronautics .%he .attempts ' to  rescind this assumption dates 
t o  the 1920's. C f .  EPiL 882, 'Dynamic Measurement on 8 h ,  6 6  Shel l  
in NBS W i n d  Tunnelo1, fo r  reference aad for  brief discussion. 

* 
Chronol6gicaUy1 of course, the linearized (Nielsen-Synge) w a i m  
of Maple-Synge theory preceeded the lsore complete theory. 



which w i l l  be discussed in detail. presently. Its usefulness as a 
classif ication scheme s h v e s ,  t o  some extent, even in the non-linear 
theory. 

The second known way is the adoption of circular p i n g  motion 
(rather than mall yaw) as the basic farm of yawing motion. The 
most troublesome Mapledpge coefficients are then excluded, and 
experiments can be readily designed by hlhich a l l  terms of the K e w -  
McShane matrix can be measured - wherebj- this matrix can be considered 
non-linear, aad mre ly  an aid 18 classification. The mathematical 
ut i l ization,  unfortunately, remains diff icult .  

Uhat is probably wanted first is an application of the Maple+nge 
(or some other) theory of aerodynamic forces acting on a given surface 
of the she l l  (and independent of the mass distribution within the shell)  
t o  a class of apossiblea, or a t  l ea s t  aprobablea, yawing motions - if 
such classes can be defined. C i r c u l a r  yawing motion, for instance, is 
ueefdL because it is a sor t  of approach t o  such a class. In fact ,  th ia  
application is achieved, perforce, in free-flight experiments. It ahodld 
be noted, however, that the determination of the aerodynamic fwces  from 
the free-Plight data is not a simple process; generally, it deperdd 
heavilp upon m existence of a sufficiently idealized mathematical theory. 
Such a theory must star t  from a certain assumed force system, or, as it 
were, from a wind-tunnel point of view. It is hoped that  this gap, as it 
were, between the possible free-flight technique and the complete non- 
l inear Elaple- theorywi l l  be eventually bridged by extensive use 
of -+peed computing machinery, and by elaborate wind-tunnel 
i n s tmen ta t ion  which wculd reproduce circular,eUiptical,  spiral,  
epicyclic, etc., yawing motion. 

These vague generalities have cited here with the object of showing 
t o  the student of exterior ba l l i s t i cs  the present moping s ta te  of the 
art: it .t difficult not only t o  build a general non-linear theory, 
but even t o  formulate a general non-linear force qwtems and thia even 
KithOllt considering ssgmmetries of the shell,  l iquidity of the filler, 
transitions from laminar flow, separation of the flaw, intamnittency 
of the turbulent uake, etc. Small wonder, then,that the l inear  theory 
remains a poirlt af diminishing returns! 

DAMPINQ T-UE 

Next t o  M i n  importance is the component of torque i r m m  as  
"damping tor& and designated by H. Specifically, this torque is 
defined by an understandbg tha t  in-direction it opposes the angular 
v e l o c i t y p  of the shel l ' s  axis, and in magnitude it depends essential ly 



on r )  . Ip the l inear  theory it is assumed t o  be proportional t o  
(i.e., t o  ), and is therefore mathematic- analogous t o  viscous 
damping of a harmonic motion," The choice of the term suggests t ha t  a 
hope must have been entertained that  a torque so defined w i l l  account, 
in the main, fur the damping of yaning motion. In fact,  t h i s  is very 
nearly the case - although the damping of the yawing motion b o l v e s  
a number of phenomena other than H. 

Ch Figure 9 H appears as an arraw directed from L t o  . Le., it 
tends t o  shrink the quasi-nutation I&$ by pulling L t rnzu-3~. 1%. 

effect upon the puaei-precession depends upon where TI is with reapect 

t o  L and 5; and in particular, in any circular yauing motion in which 

L ia betueen T1 and 5, H tends t o  stre*ch the quasi-precession, 

This simple formulation, however, has led t o  one o f t h e  p i t f e l l s  
(mentianed in the introduction), which stunted for  a whSle the development 
of oar nnon-mathematicaP approach. For instance, in the l inear theory 
precession and nutation are substantiallp circular yauing motiona, a t  
a constant #/6, i.e., with a constant proportion of quasi-nutation and 
quasi-precession. The theory shms that B dampa the mrtation, end causes 
a growth of precession. Thus i n  mtat ion H seems t o  cause a shrinkage 
of quasi-precession, and i n  precession H seems t o  cause a stretcbirrg 
ofqumi-mta t ion  - in a seeming contradiction t o  our sinple formlatian. 
In fact,  a stimulatiug question was onceasked - In a c i rcu lw yawing 
motion, haw does the  torque H distinguish between natation and preoession? 

These p i t f a l l s  a re  simply mistakes t h a t  are easy t o  fall into, kt 
also easy t o  guard against. It is easy t o  forget that  a ahrlnkbg or 
stretching of quas ia t ta t ion  and quasi-precession may be accmpl;ibhed 
by the torqw,N, as  well  as by H. It is also easy t o  assume that a yawing 
motion circular fn the absence of H w i l l  r&aLn, after El ia introrhrced 
a precession or a nutation (actually, it wiU. develop in to  en epieyclej. . 

In the presence of H the nutation and the precession w e  no longer 
circlss, but splrals. In particular, in thellnerr theory ue should .Look 
f a r  those spirals which are U s t e w ~  naturally, this m e w  unchanging 
r a t i o  #B.' This can indeed be the  case if the Corqws sbrink or s t re tch 
the quasi-pecessian 5n the same manner, proportionally, am the angular 
velocitym shrinks or stretches the yaw 6. Tvo such possible cases are 
shown in Figure 9. A shrinking sp i ra l  (SE regime) means L lagging behind 
the plane of yaw; then PI has a component which shrinks the quasi-precession 
working against the strFtching action of H. An expanding spir8l (IiE regimej 
means L ahead of the plane of yaw, u i t h  a component af H stretching the 
quasi-mutation (against the s h r h k b g  action af If) as well as the quasi- 
precession. 

* Hawevez, H has nothing t o  do with the viscosity of the air. 
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SpecificallJr, our requFFement nm ia that  the proportions of the 
tr iangle T A  (rather than an3y the r a t i o  $/6) remains constant; i.e., - - 
tha t  the angular ra tes  of both L and A, about T, be the same, and the - I A 

angle between quasi-precession and the t o t a l  t m e  be the sme es the 
angle between the plane of yaw and the w a r  of .TJ . The spiral then, 
in particular, is a logarithmic sp i r a l  (thin correspands eaactly t o  the 
si tnation i n  the mathematical approach, uhem we solve a di f ferent ia l  
equation by inquiring whether there m a y  not be solutions the frpm 

$t). In particular, we mar as-e that the angles IiT1% and %T1 are 

s m a l l  (the aursrHqption of small torques, and hence small airmp3ng rates, 
iu - together u i th  the assumptian of small yaw - a characteristic f ea tu re  
of linear theorg). Then on Figure 9 we mt have 

Spbstituting H h V r r ) =  (Py/B)$n f i r  and $'=d/(W " W 
solve for 7 in terms of the r a t i o  @/6: 

7 = h(Bpll/BCr)($/6)(1 - 8/6)/(28/6 - 1 )  (8') 

Since the tr iangles are very f l a t  (aplra l  b much l i ke  a cb-cle), 
we may take it that $/6 is as given by ( 3 ~ ) ;  then 

From the definition of o in (3B) it may be readily noted that 

so  that upen substi tut ing this in to  (8") and cancell*, we have the  
simple and curious result, 

i.e., the spira ls  of nutation and pl.Bcession are mirror h a p  of each 
other. However since nutation goes around faster ,  it shrinks faster. 
M t i p l y i a g  (BA! by the angular ra tes  as given by (9, we haps the propa- 
t iona l  radial ra tes  (the Padial components of r) divided by 61, vfth  respect 
t o  time, as  

To c*e this u i t h  the r e s d t  of t h e  standard'ballistic texts (cf., 

p r t i c d u l y ,  BRL U6), we may substitute h - %pdhu and B - mkzd2; then 

the factor b/B is (%pd/m)dk2d, where the group of f a c t o n  in the 



parentheses is  usually ur l t ten as JE, so that  (8B) becomes ( ~ ~ / 2 k ~ )  ( d d )  ( l t l /a) .  

The factar  u/d drops out tihen we change the independent variable from time t o  
the distance travelled by the she l l  and expressed i n  calibers. Thus, f inally,  
the proportional radial  rates are 

in apeement d t h  the l inear theory. 1 
A curious student might inquire here whether some of our simpliiplng 

-aesumptions might not be rescinded a t  t h i s  point. Indeed, the recission 
of the  assumption that the  damping is smal l  would be a straight-forward - 
if laborious - algebraic task; b u t t h e  clrmbasomeresult of this task wodd 
not be particularly useful, simply becauae this assumption is, generally, 
in excellent agreanent dth experiment. More -ant - and more d i f f i cu l t  - 
would be a recission of the linearity. On a sphere there s e w  t o  be no 
clean-cut analog of the logarithmic spiral* - or, mom exactly, it is hard 
to choose betwen many imperfect analogs. A crude sketch of several of such 
analogs is  given i n  Fig. 10. We s h a l l  not inquire uhich ones of these analogs 
constitute *possiblen yawing motions, and under which assumptions; it seems 
probable, for instance, that  several of such-like iwtions might resu l t  under 
the iden6ical assumptions about M(6) and ~ ( 7 ) ) ,  i f  the  initial conditions 
are  suitably varied - in  some vague analogy t o  the blending between the  
natation and the precession i n  the non-linear regime. What matters for  our 
present purpose8 is that  the idea of nutation and precession - which in the 
non-Unaar regime has already lo s t  its usefulness of superposition, and 
survived only for undamped circular motions - becomes even more complicated 
(via., l e s s  useful) when damping i s  introduced. It is  hoped that vatincma- 
t ic ians  dl3 eventually c lar i fy  these concepts. 

So f a r  we have only retraced, verbosely and laboriously, some of the 
ground unich is explored more suif t ly  and elegantly by mathematics; and we 
have refYained f m m  doing that  nhich we have, in effect, pmmised the  reader: 
t o  defend the use, in ball ist ics,  of that  obvious mental process which - for  
want of a better  m e  - ws called nqualitatLve reasoning". Let us attempt 
it MU. A s  soon as  nu broaden our approach by concerning ourselves with 
an approximate (as n u l l  as  exact) prediction, the non-linearity ceases t o  be 
the bugaboo it vas i n  any quantitative reasoning. 

Let as consider a typical looping epicycle (linear or  non-linear), w i t h  
loops fa l l ing short of the origin. We sense tha t  this is a caaa i n d i c h  
the quad-precession predominates, somehow, over the quasi-nutation, The 
phase reldtion between A1, L and Tl alternates rapidly, and nu sareise tha t  

the alternating stretching and shrinking of quasi-precession and quasi-nutation 
by M, on the  whole, cancel; nu may consider then only the  direct  effects of B. 

* 
Since the  sum of angles o f a  spherical triangle depends upon i ts  size, 
there can be, generally, no similar triangles (as $ LT1) on the sphere. 



Ey /U: Examp/es o f  Bssib/e Non- Linear 
S j a / ~  Generated 654 e Given 

Linear L057cui LX mic Spiral 



We infer  that  the quasi-nptation definitely damps. A s  to the quasi- 
precession, we observe tha t  it is  s t re tched  when the angular velocity7l 
is large (near the maximum of yaw), and shrunk when is small (near the 
minimum of yaw); we infer  that  quasi-precession gmm, but only el-. 
We therefore infer that  the long-range s tab i l i ty  is present, with the 
following qualification. A s  the loops shrink, the shrinkage of quasi- 
nutation s low down, and the growth of quasi-precession becomes more steady; 
eventually, we no longer can assume that the phase relat ions of 81 and L 

cancel out, but surmise that  some steady phase relation, such ols tha t  of 
of Fig. 9b, begins t o  ke f e l t ,  i.e., even the  quasi-nutationuil l  begin t o  
grow; i.e., the long-range s t ab i l i t y  will eventually cease; although, by 
(8C), the growth of precession dll be much slower than the shrinkage of 
the  nutation had been ( th i s  circmnstance ia also obvious fra 8 conparison 
of Fig. 9a and 9b: i n  precession H is smaller, and also it opposes, rather 
than adds, i n  some wag9, the action of M). Now, th i s  is  the eaae even when 
we s t a r t  with a motion i n  nhich the quasi-precession sews  ta predominate 
from the start. Had us started with 81 epicycle looping over tha  origin, 
the long-range s tabiYty ~ U l d  have been even more pronounced, 8 inca the  
si tuation would more often resemble Fig. 9a; yet ws cannot claim the long- 
range s t ab i l i t y  for an indefinite range, as long as the si tuatton 5s not 
precisely tha t  of  Fig. 9a - for a perturbation af the steady pham relat ions 
of Fig. 9a would tend t o  cause a growth of quasi-precession precisely a t  
those timas u h e n v i s  greater. 

Thus, our quali tat ive conclusion (uithout going into arg m%#omtics) 
is that quasi-nutation damps atrongly when it is a sizable compnaat of 
yaw, growa skdy only vhen it is an unimportant component; the qwl- 
~ e c e s s i o n  damps strongly when it is an unimportant component of po*, grows 
slowly tmen it is the  principal component of yau. This concln#ian falls 
pretty close to what i s  predicted bg the exact linear theory; pti, it i s  
completely fYee from the assumptions of linearity. 

,4 positive Magnus torque* on a l l  our sketches pulls  L up. Thus i n  a 
general epicycle ( i f  the oscillatory effects of M may be presumed t o  cancel 
out on the d o l e )  T builds up the  quasi-precession. Ihe quai-nutation is 
on the whole shrunk: fo r  it is  shrunk when 6 and T' are large, stretched 
only *en 6 and T are small. The steady sp i r a l  nutions. (F'ig. ll) are passi- 
ble i f  

Substituting fl and I4 aa before, and T = t6, va can solve for  yt 

" Ekgnue force is the force which deflects a spinning ball ,  and Magma 
tofpue is  the torque produced by the Magnus force. The reader Zs 
expected t o  be familiar v i th  t h i s  (and other) his tor ical  background 
of Hagnus effects. 
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Using (38) again, we have 

i.e., the two spirals are no longer mirror images1 the precessio spinrl 
is steeper. m u ,  substituting p = ~ 2 ~ 2 ( 1 -  P)/LB, t - , + p d k  and 

A - <d2, and reverting t o  the notation of ERL Wl6, we have the proportional 

ra tes  of growth of nutation and precession as 

(~,/k:)/a, 

in aveement with the l inear  theory. 

The effect  of T i s  sonewfiat similar t o  tha t  of H, the ctlfferences lying 
in the manner of dependence of damping upon the s t ab i l i t y  parameter a, and 
also i n  the fact  tha t  T can be negative as  ve l l  as positive. Many interesting 
examples of the interplay of these facts are discussed extensively elsenhere 
(cf ., e.g., BRL 668 and EUH 682). It should be noted tha t  the study of the 
effects of T seems to be one occasion where it is deeirable - because of the  
recently-discovered strong non-linearity of T - t o  substitute f o r  the linePri- 
rat ion (9') an exact, non-linear, solution of (9). 

An i l lus t ra t ion of the effects of H and T (as uell as the effect  of the 
aerodynamic forces, which ve shall  discuss presently) is provided by the 
spinning top. The f r ic t ion a t  the t i p  of the top acts as  some analog of 
aerodynamic cross-forces, and its torque as  some analog of certain aerodynamic 
torques. The analogpis imperfect because the laws of Coulomb f r i c t ion  are 
not the same as  those of the aerodynamic forces and torques (the f r i c t i on  
force depends only upon the  direction, rather than the magnitude, of the 
velocity a t  uhich the t i p  of the top rubs against the table). The greater 
complexity of the top's  motion (in comparison d t h  that  of the shell)  resu l t s  
in the apparent l ively  and capricious behaviour of t he  top; but there can be 
no doubt that some of the dispersion of artillery fire is aldn to the wandering 
of the top. 

A t  the start the center of gravity of the top is substantially stationary, 
while the t i p  rapidly suings out, sliding, substantially in a circle. The 
frictional force is subatantially perpendicular to the plane of yaw, and acta 
a s  a positive Synge force S (or as a positive %nus force F)j it produces 
some analogs of H (or a positive T) - and also a s l igh t  spin-accelerating 
torque. As a result ,  the nutation damps out (rather abruptly), and presently 
only the pure precession remains. This precession m a y  (because of H and 
positive T) grow f o r  a while; but the damping is presently taken over by other 
processes. Being ( i n  the slow precession) rather steady in its direction, the 
f r ic t iona l  force now causes same horizontal velocity of the c.g. across the 
plane of yaw: this tends t o  neutralize the rubbing velocity perpendicular 
t o  the plane of yaw, so that  the t i p  tends t o  start rolling, rather than slidiw, 
on the surface of the  table. However, as  the plane of yaw continues precessing, 
the rubbing velocity develops a camponent in the plane of yaw (the top stark, 
literally, - to  "draw. on the surface). The f r ic t ional  force thus develops a 
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component analogous t o  the l i f t  L, which (as it uill be presently shown) tends 
t o  damp the  preceseion (there being no longer a natation t o  grow). I* seems 
t o  be an experimental fac t  (~donb ted ly  provable anelpsis) that th;, effect  
of L overcomas that  of B and T. This "draggingn neutralizes the velo'city of 
the c.g., and fFndlly the vector o comes vLthin the radius of the t ip;  H (or T) 
become negative, and the top rath& suddenly ngoes t o  sleep". 

Particularly interesting is  the End of the top which trrms upside dawn. 
Such a top starts as s ta t ica l ly  stable: vlz., the radius of i ts  t i p  is large, 
and the m e t a c e n t e  of the top is above the center of gravity (rather than a t  
the t ip) .  Far the same reason the rubbing velocity due. t o  spin is genarally 
greater than the rubbing velocity due t o  yawing; the f r ic t ion  is amlogoup, 
therefore, t o  a negatFve Magnus torque. Nov it is the precessionuhich damps 
oat rapidly, uhile the natation builds up t o  n/2 and beyond. m i l e  the  vector 
of anmar velocity r e d n s  substantidlly vertical,  it t u n a  vith respect to 
the top; for an instant the top is i n  the pure cartwheellng motion, vithout 
q adal spin. Thereafter the motion can be considered ae the  nntation of 
a statically-unstable top, u i th  a positive Magnus torque - a c h  ~o.esently 
commences damping. This is  as though a fln-stabillzed she l l  turned around 
and flew flns forva~d;  in fact, We early stages of thia motion are not unlike 
the motion of a mortar shel l  ladng "shortn. 

The cross-torques M, H and T pretty u a l l  camplete ths cross-torpus par t  
of U e y - & S h a m  matrix (7); symmetry demands only tha t  we mention the Hagms- 
cross-torque XT. This is one of the marginally relevant components, glvsn 
rather an undue prominence by the Maple-Synge symmetry arguments; it nou seems, 
for  instance, tha t  varioue non-linear camponerrtsg+of T are more important tm 
XI! ( i t  should be noted, however, that  XT has not been measured a t  r ea l ly  large 
yaws). On Our sketches XT pulls L across the quasi-nutatdon; thns, i n  the 
general epicycle its damping effects rather cancel, and in c i r d a r  yawing 
motions it is  rather d i f f icu l t  (through not impossiblem) t o  distingoish its 
effect A.m tha t  of  M, since it affects only the angular ratee. This is in 
agreement with the 'theory of BRL U6, wblch shows tha t  XT produces only a 
nsgliglble effect  on the angular rates. 

We &might remark on the apparent (through so far not established) checker- 
bard andl hierarchical character of this matrix. Zhe l lnear M can be genorallzed 
into  a function of both yaw and spin, odd in yau and even i n  spin; a l l  terms 
of such an expansion of li seem t o  affect  only the angular ratee, and leave 
damping unaffected. The torque T, odd in both yaw .and spin (and parpendicular, 
by Maple4ynge theory, to  H), appears a s  a s o r t  of refinement gn H; a l l  its 

Which i s  a point on the axla of the top (or fixed with respect t o  a ship) 
thru which the reaction of the table (or of water) acts, f o r  mal l  angles 
of Jaw. 

wt C f  m - 6 8 2 ,  *Spiral Yaw- Motions of 8 l  mm Shell PIS: a Study in Ncm- 
Idnear TheorJF (1953). - C f  BRL 882. 



terms seem not t o  affect  angular rates, but are very essential  in damping. 
Now, the angular v e l o c i t y ~  i n  itself i s  a sor t  of reflnment on yaw 6; thus, 
H can be accounted forg by thc variation of the instantaneous angle of attack 
along the exis of a yawing shell. Thus H, analogously ta  T, seema a refinement 
on I!; it can be an even function of spin, does not affect  the  angdar  rotes, 
and affects  damping. Zhen XT appears a refinemant on both H and T: it stands 
in the same re la t ion to H as  T t o  M, and to T aa H t o  H; it ie odd both $n 'l) 
and spln, affects  angular ra tes  and does not affect  damping. Tb& is  as though 
the l inear  theory elevated XT on the principle of primogeniture, and disinhsrited 
its more Important cousins, e.g., non-linearities of T. 

CROSS-FORCES ~ 
I 

The cross-forces - via., the aorodyzdc  foroes I, S, F and IF of matrix 
(71, as  well as the component of gravlty normal t o  the trajectory - affect  the 
yauingmotion by produchg a swerve, i.e., by moving paint TI, o r  by shifting 
the beae of the .vector* of quasi-precession, rather than that of the quasi- 
nutation. This i s  considerably different from the effect  of the cross-torques, 
and our *qualitative reasoning', accordingb, dll have t o  be'lconsiderably . 
modified. Alsa; 1% dl1 not be satisfplng as it uas v i th  the eoss-torques. 
The dif f icul ty  is quite real: ue are  dealing w i t h  a more camplicated phenomenon 
than a mere angular motion, via., with the  effect  of swerve upon the yawing 
motion. Mathematically, t h i s  is the step of coupling together two separate 
di f ferent ia l  equations - a s tep laborious wen in the linear ,theory. Indicative 
of this distinction I s  the obvious *cumulative* character of the effect  of 
notion of T1 upan the motion of L: the velocity of T1 must ham d a t e d  f o r  

some lengtt-of time, and In  a substantially the spine direction, before its 
effect  i s  f e l t ;  or, the  position of T1 i n  the configuratian of the Wangle  

- 

T1 LAl ref lects  not the instantaneous velocity of TI, but that velocity uhlch - I 
had exlsted some time previously. 1 

Uft. In  advanced exterior-ballistics texts (e-g., BDLG U6) the forces 
in t h q a n e  of yaw are resolved usually into the nowel furce N (perpdcular  
t o  the axis of the  shel l )  and axial drag DA. It seem more natural t o  resolve 
them in to  lift 1; (perpendicular t o  the trajectory) and drag D (opposmd t o  3); - 
in oar case this is also more convWdbnt- 

I I 
On all our sketches l i f t  pulls TI up. To the first appraximation - if we 

can disregard the  effect  of M on the damping of t he  yauimp?mtion - it i s  
obvloua tha t  quasi-precession is shrunk by the 1I.a (those rare occasions when 
L on our sketches is  below TI represent minima of yaw, h e n  l i f t  i s  small). i 
The effect  of l i f t  on the q<si-nutation i s  less  .?aWious, and i n  f a c t  is l e s s  
important. To the first approha t ion  we could s i ~ p l y  say tha t  a motion of TI 

has no effect  upon L and \, i.e., has no effect  on the quasi-nutation. ~ndekd, 
tha t  would not be very far from the truth. 

Q 
C f  EIRL 668; also, recent HRL monograph, .Exact Re-Statament of the Equations 
of Motion of a Shell.. 



On a closer inspection we observe tha t  the motion of 'I!, does affect  L 
J. 

by changing the yaw, and therefore changing the torque M_. Specifically, we 
may distinguish two effects of the motion of Tlr 

The f i r s t  one is  as  follows. In i ts  continuous m i n g  toward 4, the 

point % fa i ls ,  so t o  say, t o  "leadn 5. The plane of yaw, therefore, turns 
- - 

more rapidly, and so does the arrow of M on our sketches. Inspecting our 
sketches (ei thar one, or every one, according t o  the reader's patience) we 
obseme that the faster turning of El tends t o  pul l  L away from %; we conclude - 
that  l i f t  tends t o  stretch the quasi-nutation. 

We are stepping now close t o  a p i t fa l l .  For instance, the l inear  theory 
show that  precession and nutation (under the assumptions which we have so 
fa r  accepted, vis., a constant velocity and spin of the shell).have constant 
proportions $/6; but precession is damped by l i f t ,  while nutation is  bui l t  
up. Hence the quasi-precession i n  nutation is stretched, and quasi-nutation 
in precession is shrunk - i n  apparent contradiction t o  our prellmin;trp ohser- 
v a t i o ~ .  The answer l i es ,  again, in the neglect of the effect of M, and i n  
the unwarranted assumption that  a motion representing a certain proportion 
of precession and nutation without the l i f t  dl1 reta in  this proportion a f t e r  
the l i f t  i s  introduced. It is  easy t o  confuse two different  problems: one 
(ours), how does the l i f t  affect  a motion vi th  given I n i t i a l  conditions; and 
the other (practically habitual i n  the milieu of mathematicdl approach), how 
does a possible sp i ra l  motion in the presence of l i f t  d i f fe r  from a possible 
spiral motion without l i f t .  

We have an inkling of this i n  considering the second effect: a s  I turns, 
it also (on the whole) tends t o  diminish in magnitude, because of the gener- 
ally diminishing y b .  The angular ra te  of quasi-precession, we might judge, 
is  not affected much, for the  magnitude of the quasi-precession also diminishes. 
But, since the velocity of Al is independent of the position of TI, the angular - - 
ra t4  of 5 about TI is, on the whole, increased; i.e., the synchronism of L 

and 81, o r  the sp i ra l  character of the motion, dl1 not be generplly preserved - 
anless the  phaae relat ions of the triangle T, LA, are such that  the magnitude 

L L 

of quasi-nutation i s  changing i n  some particular manner. I n  this way we corn 
to consider thg s p i r a l  motions again. Tuo possible configurations are shown 
on Figo 13, e c h  explains the physical mechanism of the well-known result of 
the linear theory. Thus, i n  precession (Fig. 13b) the quasi-precession is 
shmmk m t  only by the lift, but also by the PI-torque; the quasi-nutation i s  
simultaneously strongly shrunk by the M-torque. In natation (Fig. q a )  the 
M-torque stretches the quasi-precession more s t ronglythat  it is shrank by 
the l i f t ;  and qimultaneously, the M-torque s l ight ly  stretches the  quasi- 
nutation. 

C u r  quali tat ive conclusion (completely free from the  assumptions of 
l ineari ty)  is, therefore, as follows. The quasi-precession is damped by l i f t  
strongly if it i s  an essential component of yaw, grows s l igh t ly  i f  it is  an 
unimportant component. The quasi-nutation grows s l ight ly  if it I s  the princi- 
pal component of yaw, shrinks strongly if it i s  an unimportant component. 



(a) nutat;on (b) prec ession 
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The effect  of lift should be juxtaposed with that  of H-torque. In fact ,  
these tuo refinements on an undamped epicyclic motion form a uould-be sat is-  
factory system for  damping of yawing motion i n  the absence of Hagnus effects: 
One damps nutation, the other - precession. This fact  has been brought out 
particularly clearly by Davis and Folli+, to  vhoae work I take pleasure t o  
acknouledge my indebtedness once again. The student of ba l l i s t ics  should be 
remlnded a t  this  point that the Magnus effects had to be introduced, historicai- 
ly, precisely because tha t  syatem failed to ascount aat iaf ic tor i ly  for  the 
to t a l i t y  of experimental iafonnation. 

Let us now revert  t o  the quantitative evaluation of the effect of lift 
i n  the llneax case. Instead of considering the angles, as  we did in (8) and 
(9), we should now consider (cf. Fig. U) the rmportional radial rates, i.e., 
the ra tes  of growth divided by the magnitudes. To preserve s ia i la r i ty ,  

(yq- L/apu)/6 = ([arb - l / d / ( 6  - $1 6 0 )  

Substituting - !6, H = +6, L = 4, Tl-  (%/B)$, and $ - $/(6 - $1 
and sololng for  y, we have 

7 = - (,f/m)(Eihy)(l - $/6)/  [(I - $/el2 - w/A~(J$] (10') 

Snbstituting, f h n  (3*) and (3B), &/A~< = (1  - %)A and requiring tha t  

the r a t io  p1/6 remain constant as i n  (3A), we have the  simple result ,  somewhat 
analogous t o  (BB) : 

In the presence of swerve we no longer can compute the proportional radial  
ra tes  (with respect t o  time) as ~ y / 6  - uhich we did i n  (8B); nor can we say - 
in analogy to  (88) - that  the two spirals are mirror images of each other; 
rather, these *tea are given by the left-hand side of (10). Substituting 
into (10) 1 = K,pd2G, and reverting t o  the notation of BRL U6, ve have the 

. .. 

proportianal radial  rates with respect t o  travel  as  

i n  agreement d t h  the Linear theorp. 

There i s  some resemblance between (10C) and (8G), but it should not 
dis t ract  our attention *om the fac t  that the mechanism of the spirals of 
(10C) and (80) are essential ly different . The spirals  of (8~) were yaw 
motions about a straight-line trajectory, thoae of ( 1 0 ~ )  represent an effect  
of swerve. Similarly, some further reflnsnents on (10) are possible, but do 
not seem e s p c i a l l y  profitable. 

3 
OsRn Report 2529, GIT JH: 29. 



Ma nus Force, While the appreciation of the Magnus effects arose 
origina -fir- from the knowledge of the k i s t e n c e  of the Wagnus force F (cf. 
the swerve of a spinning ball, Magnusb wind-tunnel experiments with spinning 
cylinders in cross-flow, Flettneras rotor, etc.), with a shel l  the most h- 
portant effect  of Magnus force F is  that  it produces the Nagnus torque T - 
vhose effects have already been discussed. Magnus force proper does produce 
some legitimate swerve*, (and i n  a spinning top, the M c t i o n  at the t i p  
produces some wandering of the top); but i t s  direct  effect  on the yawing motion 
per se is, fortunately, negligible. A positive F on all our sketches pulls 
T1 t o  the l e f t ;  therefore, it affects mostly the angular r a t w  (sUghtly 

increasing them), rather than the damping rates - and i ts  effect  i s  dif f icul t  
t o  distinguish from tha t  of a change in we 

Force. The force S which produces the damping toxqae H has been 
for  the sake of a certain f o w l  ~path~pu~cical 

consistency. This fome is closely analogous t o  Magnus force. On a l l  oar 
sketches th i s  r o x e  pulls T1 across the direction of fhe bect& of quasi- 

nutation: Thus i n  the general epicyclic motion i ts  effects rather cancel out 
(even more so than was the case d t h  F), and i n  the spjsal  motlone it affects  
only the angular ra tes  (rather than the damping r a t e s ) ~  it does ham some 
effect  on the swerve, but i n  the study of small yauing motion it can be dis- 
regarded. 

Our qualitative conclusions about the unfmportance of F and S are in 
agreement with the resul ts  of the l inear  theory. 

Cross-Magnus Force* The force XF thich produces the M a w  cross-to-e 
XT needs mentioning o w  f o r  the sake of completing the l inear  maWx (7); i t  
survives i n  the linearisation o f t h e  NapleSynge theory only f o r  the mason 
that  Syngejs aerodynamic hypothesis t r ea t s  the yaving v e l o c i t y ~  as being on 
par w i t h  the yaw 6 (rather than as a refinement on 6, as we h ~ a d ) ~  In the 
results of the linear theory of yawing mootion the effect  of t h i s  force is 
apparently negligible. Yet we may 8-e tha t  the cross-form part of the 
mat* (7) may possess the same checker-bard character uhich ue have detected 
in the cross-torque part of that  matrix; then XF should affect  daqpjag. On 
our sketch6 %F pulls T, along the direction of paaai-nutation; 80 %bat, indeed, - 
it affects damping in the basic, spira l ,  motions. It i s  a simple matter to 
investigate the effect  o f =  on sp i ra l  motions qnanitatisely, uia the assmap- 
t ions of l inear i ty  - analogously t o  ( 1 0 ) ~  The resu l t  is tha t  the radial pro- 
portional ra tes  of growth ui th  respect to  the d i s t ~ n c e  i n  calibers ere 

9 
C f  ., e .g., BRL 703, *On Jmnp Due t o  Marie Disturbances' j also BRLM 682. 

IXC 
An evaluation of the effect  of F on the angular rates codd  readily be made, 
but does not appear profitable: for, u i th  the  assumptions usually made In 
the l inear  theory, it turns out that  t h i s  effect is negligible. 



This is i n  agreement with what the result  of l inear theory would haw been 
i f  terms of second order i n  J's had been kept. Thus, P docs not matter in 
yawing wt ion  sknply because its effects are small. We may note that  o m  
surmise about the checker-board character of (7) is confirmed, but is  over- 
whelmed by the hierarchical character of that matrix. If the  reader wi l l  
tolerate another figure of speech, the primogeniture c l a b  of EF, f i l ed  with 
the Maple-$ynge theory, are rejected even by the tCelley-McShane theory a c h  
is descended from Nielsen-Haple-Synge concepts. 

'he checker-board character of (7) can be summed up by vriting 

M(a) T(d) ~ ( d )  B(a) 
and 

B(d) XT(a) S(a) p ( d ) ,  

uhere (a] and (d) stands f o r  "affects angular ratesr and e f f e c t s  damping 
rates". The hierarchical character of (7) can be summsd up by ranking i t a  
components in the order of their  importance: 

Ist rank M (a) determines the basic character of motion 

2nd Ha T, H (d) deterndne damping 

3rd " IT, F a  9 (a) refinement on angular ra tes  

hth ' XP (d) refinement on damping rates. 

The usefulness of this t r iv i a l  classification l i e s  in the f a d  that it 
shows up certain weaknesses of NielsenSynge-Kelley-mane linearization of 
Plaple-Spge theory, and helps to organize the methods of further attacks thus, 
i f  we study the damping rates, no direct effect of XT, P and S can be expected, 
while refinements on Ha T and N are just as legt imate  - and may be rnon 
inportant -than the measurement of the "first-order@ term XP. 

The effect of the force of gravity acting across the trajectory, which 
causes the curvature (as distinguished from the guerve) of the tzajectory, is 
considerably different from tha t  of the aerodynamic cross-forces - for the 
simple reason that this force i s  relatively constant and independent of yaw 
and yaving velocity. Hathematically this  force manifests' iteelf an inhomo- 
geneity of the differential  equation (rather by a change i n  thg coefficients 
of the equation) and results in  the fact  that the general (-ear) solution 
consisting of precession and rmtation must be augmented by the third component, 
called yaw of repose. 

We may arrive a t  the same conclusion by an argment analogous to that  by 
a i c h  we have introduced the generalized (non-linear) precession and mutation. 
The point T1 ~ f a l l s ~ ,  i n  the surface of our sphere, (pf. Fig. a) a t  the 

velocity gcos9/u (where g is  the acceleration of the gravity and 8 ia the angle 
of inclination of the t r a j e c t q ) .  If the shel l  i s  t o  trdn properly, the 
vectorial velocity of 81 on W s  sphere nmst be approximately the same. Drop 

pir.g the convention of drawing 81 above T1, we observe that  L wust be directly 



t o  the l e f t  of $, i.e., there must exis t  a horieontal quasi-nutation, pointing 

(from L t o  q) t o  the right. Moreover, the point L of t h i s  sphere must have 

s u b s ~ t i n l l . y  the same vectorial velocity, i.e., there must adst suitable 
torques; ud assume these to consist largely of the X-torque. Then there must 
exis t  a yaw (from T1 t o  q) pointing di rect ly  t o  the right. Thua T1, L and 

q are co-planar and on our sketches the si tuation appears as  a circular  yaw, 

except tha t  the motion of T1 causes the t r i p l e t  of  these points t o  move down 

without any rotation noticeable i n  our sketches. 

The condition of the *steadinessn of t h i s  nutioa is  

which, on assumptions o f  Line&ty, becomes simply 

and from uhY& there follow the simple resul ts  

and 

The expression (=A) for the yaw of repose may be rswritten i n  a number 
of ways. For instance, i n  the notation similar to tha t  of IBL U 6  Pnd IBL 668, 
we would introduce the dimensiodless quantities v - ?d/u - spin per caliber 

of W e l ,  and Jec - gdco&/u2; then ( 1 2 ~ )  becomes 

in agreement rrith the skeceletonieed fona fo r  the yaw of rspose in the l inear  
theory. 

The yea of repose is considered, na tmdly ,  a basic form af yaviag motion, 
analogous t o  t he  precession and the nutation of (38). Its supergmeability with 
the nutation and the precession is, of course, d is t inct ly  a feat- of the 
l inear  theory. I n  attempting to cambine the yav of repose d t h  the epicycle 
i n  the genaral non-linear theory we muld met, unfortuuntaly, the d i f f icu l t i es  
analogous t o  those we met in attempting t o  pass from the l inear t o  non-linear 
epicycle. A study of the non-linearities of the yaw of re se a d e t i n g  alone 
(analogous t o  our rdew of the theory of the spinning top does not appear 
profitable. 

P" 
It is a simple matter, however, to generalize (Z), wfthin the assumptions 

of l inear  $heory, by perturbing it f o r t h e  effect of other forces and torques. 
A t  t h i s  stage we may readily make the perturbations for the cross-torques and 
cross-forces: these would be very similar t o  those of (81, ( 9 ) ,  (10) and (ll), 



except that  the conditions of sp i ra l i ty  would be replaced by the conditions 
of a parallel  synchronous motion, e.g., (3B) replaced by (12"). Just t o  
indicate the simplicity of such processes, ve might make the perturbation of . . 
(12') for  the H-torque. From Fig. l k  it i s  obvious that  we must have 

from which, using (12*), 

Y = h/*y 

and the downward component of the yaw of repose can be shovn to be 

in agreement with the l inear  theory. 

Additional perturbations on the yaw of repose (including the perturbations 
for the d a l  forces and torques, vhich we ham not made a s  yet  for  precession 
and nutation) we sha l l  leave as  an exercise fo r  the reader; and as need hardly 
mention that our method can reproduce a l l  the resul ts  of the l inear theory. 
We might only remark that  in any respectable trajectory the yaw of repose is 
extremely small, and is, therefore, i n  i t s e l f  only a minor refinement on the 
epicycle. Experience shows, i n  some cases, that  an apparently large suarmital 
yaw is vezy l ikely  due to a survival of the epicyclic yaw, i.e., insufficient  
dan~ping. We ndght also mention that  Jec, unlike the aerodynamic J's, is pro- - 
portional to the caliber - so that  the yaw of repose must be scaled from one 
c a b e r  to another by other rules than those of the epicycle*. 

L e t  us now consider the  effects of drag (D) and of the component of 
graxity (mgsin8) acting i n  the direction opposite to  the trajectorg vector 
T Their effects d i f fe r  considerably frcm those of the cross-forces -1 " - 
( ju s t  as  the -0 perturbation of BRL Llr6 differs from the inclrwion of the 
complex components into the coefficients of a differential  equation). They 
affect  the yawing motion by changing the velocity of the shell,  and hence 
changing the overturning moment FI and the s tab i l i ty  factor s. In precession 
and nutation - cf. ( 3 ~ )  and (b)-- the proportions of the spherical tr iangle 
T 1 4  are no longer constant, even i n  the linear theory. 

Let us start these considerations f i r s t  i n  the most general (and that 
necessarily means vague) way, particdarizing them presently by resorting 
t o  the sp i ra l  motions, and finally, t o  the assumptions of linearity. Let 
u s  start a t  the instant of minimum yaw (either W or E sketch). We note tha t  
throughout the regimes of increasing yaw (NW, N and NE sketches) the motion 
of the point L, caused by M, contributes t o  the increase of yaw - specifically, - 
* Cf. BRLM No. 833, nTrajectory Models i n  Mortar Fire*. 



by tending t o  s t re tch both the quasi-precession and the quasi-nutation. Hence 
the decrease of 3 caused by the loss of velocity, decreases the growth of yau. 

In  the regimes of the decreasing yaw ($E, S and SW sketches) the motion 
of L tends t o  &ink both the quasi-precession and the quasi-natation. This 
fact, taken alone, does not give us the information a s  the total effect  on 
yaw: both the quasi-precession aria the quasi-nutation are decreased by the 
loss  of velocity of the ahell; but the midmum yaw is the difference between 
the two. We can observe then that i n  these regimes the motion of L impedes 
the shrinkage of yau. Hence the decrease of the speed of L - by decreasing 
the Impeding of the shrinkage of yaw - increases the shrinkage. 

We conclude t en t a t i veu  tha t  . t h e  .. loss of velocity alv& damps the yai 
of a spin-stabiliaed projectile. 

We may note that  t h i s  damping i s  associa tedvi th  an increase of the 
stability factor; and it is  interesting tha t  our i n t u i t i v e  sense of the ex- 
istence of a relat ion between the s t ab i l i t y  and the amplitude (or hpbng) 
of the yau is, In a nay, confirmed.? We may also note that a t  this stage 
we a re  not able as yet t o  make a definite eta-ent about the shrinkage of 
the quasi-precession and the quaeri-nutation; this earresponds t o  the fact  
that  we made no c d t t m e n t  about the shape of the epicycle, via., about the 
proportions of the precession and nutation (or quasi-precession and quasi- 
rmtation) i n  t h i s  epicycle. It mey be seen, fo r  instance, from (3B) tha t  
different behavior of the  quasi-precession and quasi-nutation may ba expected, 
depending upon &ether the nutation or the precession predonlnatea. 

We arrive a t  the consideration of sp i ra l  motions by a proce13s samewhat 
similar t o  tha t  we used i n  discussing the effects  of lin. The angular velocity 
n o f  q-1-nutation about the instantaneous position of paint L remains con- 
stant,  but the l inear  velocity of point L In our sphere deareasesa thus a 
possible syncironlam of the quasi-precession wlth the plane of yaw tends t o  
be d impted .  Pet this Bgnchronlm may be. preserved, appmrlmately, i f  the 

I .  . magnitude of the  quasi-precession decreases, tbo. T h b  can be done by the 
torque M if L lags the planp of yaw; the si tuation m u s t  be then described by 
a skztch, and the quasi-nutation m u s t  EM&, too. But t he  spiral ~ ~ ~ t i o n a  

I 
amst now be considered i n  coajunction rdth the fac t  that the ratio $/6 from 
( 3 ~ )  o r  (0) is no longer a constant; i.es, the quasi-rmtation and quasi-.- 
precession a re  decreasing at different proporUonal rates; the angles $ md 
y In the tr iangle TI% are changing, and the synchronism of : the quad- - - 
precession d t h  the plane of  yau can no longer be exact. ~pecin 'eal lp ,  in 
nutation (Fig. s a )  the quasi-precession will shrink more rapidly, and the 

* 
With fin-stabilized projectiles the loss  of velocity bailds up the pau - 
but there the loss of velocity makes the she l l  m r e  slu~[&h in its yawing 
mtion,  or - i n  our in tui t ive  sense - l e s s  stable. 



m/y LL changes j hence 

. 
I LL (I- %a)  & 

i?( Z S P  cr. 
.- 

2 u. 

(4.) nubtion (b) preccss;on 

f ig /5: fffcci!s 0 f D r .  
a7?a/ogy 

* A  
Ar H = K ~ ~ d u = % y  - K , , Q ~ ~ U W ~ ~  

4, 
t 

I - * ( I * - )  Q - ++ J 
+ 

I 

L 2k, 

. 

I I/rn 0-81 = - = only wf changes s m 
Them : 2 GI Zaa-, = - s d l  

I , . 2 I And: I? -= - . -  -= -  .%=- ( I  - vra) . 4 - 
Ss wl .' zs ZSP dl z &I 

u (L - = - +  u -t 

t 'dl 

t 1 ( I -  Y e )  
(J,+J, ,  -- J, (1- /a=) 

e 2 

J A  4 LC,? Vr)- ( / -%a)]= - (2% + yfz, 
2ka 24: 

Fig /6: Lffects o f  Axis/ Torque 



r a t i o  @/6 will increase, as it shonld by ( 3 ~ ) ;  the augle , #  dll increase - 
and i n  the l i m i t ,  *en e tab i l l ty  factor becomes inf ini te* u approaches 1, the 
motion becomes the vacuum nutation, and points L and T, merge, @ m e s  t o  

A. 

have meaning. Analogously, in precession (Fig. 1%) it is the  qmi-nutat ion 
which shrinks more rapidly, the ra t io  @/6 decreases, arid so does tbe angle J3 

. *  
(Pnd In the Wt it is puhich m s  bhavaamaaing). 

Faseing t o  the quantitative emluation of the ra tes  of shrinkage on the 
assmptions of l lneari ta,  ue must nou drop our pretence of awiding calculus: 
we are now concerned w i t h  the rates (La., derivatives) more intimately, and 
we paralle11lng a more advanced mathematical procese (the YI(B pertarbation 
for  B e  non-constancy of the coefficients of the differential  equations) than 
before. Still, we sha l l  need not the theory of the differen- equations, 
but only the wst elementary operations of the differen- aalculus. If ve 
l e t  A be the quasi-precession (6 - @), ue can re-vrite (3B) as 

From Fig. 15 we observe tha t  the r a t e  of c h a m  of A is  A-  - ~(a), 
and the ra te  of change of 6 is b - - 

Y&' 
I$,- be an easy matter to  re la te  

the w e  of velocity t o  the  ra te  of ngerb of a. To re la te  these ra tes  
(A 6 and 6) we need only to diffemnthtc (3C): 

uMah, we might note, ue do-not consider aa a di f ferent ia l  equation. Subgti- 
tntfag the erpreeeione far A a d  8, and Further subeti$&ting @ - */A and 
9- (%/B)@ as before, we have the  equation for y, fnzm which 

Substituting h t o  (a') the values of @/6 and A /6 fMm ( 3 ~ )  and (3C), and 
eiarpli- a s  before, roe have 

y - - 6/20(Ar5/2~) ( 1  $ a )  (a) 
Obrrlonsly, the pmportiohal Fates of change (6/6) M 

- ;/20 (148) 
I 

fo r  both precession and nutation; and l l t t l e  algebra need p dme h ahow 
that the radial rate8 with respect t o  t ravel  are  

(ItrC) 

2 - (*we Je - gdsi&/u ), i n  agreement with the  l inear  bheorp* . - 
O f  course, the mechanism of the resultant lcgarithmic spirals is again 

different from t h a t  of  the spira ls  of (8C) and 10C). It is indeed a t r ibute  
t o  the plegance of the mathematical l inear theory that three mch dis t inct  
m d c d  processes resul t  i n  the same simple (exponential) type of eo&*$ion. 



It may be remarked that the suhsctipt D i n  ( a ~ )  re fe rs  t o  the  f u l l  drag 
(rather than the axial  drag M), i.e ., includes the yam-drag; uhUe i n  the 
standard texts on l inear  theory J,, is really meant as Jm. A more thorough 

(up t o  a point) study of the theory indicates, indeed, that  it is more nearly 
correct to use Jg ( in  our sense) than Ju - as the student vill, no doubt, 

have occasion to-find out. I 

AXIAL mR4m 

It nau remains only t o  inspect the effect  of the torque (A) acting along 
, the axis of the projectile. In the l inear theory it is the spin-decelerating - 

torque, = ~lpdju'u, and its effect  i s  rather cmpletely wershpdowed by the 
increase of-s tabi l i ty  due t o  the loss of velocity. This torque can be madi ly  
generallsed, by the MapleSynge theory, t o  includetenas andlogous t o  yaw-drag, 
etc.* 

M e ,  a t  last, is one torque tha t  truly maps on our sketches as a point - 
via., the point 5. It was mentioned, howem, that in our method torques 

must be decomposed along and.across 2. In the  foregoing discmaion of the 
cross-torques - generally, fo l lonbg  the assu!aptions of U e a r i t y  - ne had 
neglected thia subtle distinction, t reat ing torques normal to - 4 rs though 
they vare no& to - L b  i..e., w had i n  effect  assumed cosj? = 1, o r  oar error  

uas of the second order i n  $. The component of J a l o n g  L is a p p r o m t e l y  
same asJ), but its component across L is approsbatelyA j?, vir,, of  the 
first order i n  $ (Fig. 16). The f ~ r s r  component, insofar a s  our sketches are 
concerned, acts analogously t o  a negative drag, i.e., by changing o (except 
that the change of o due t o  change of m, must be distinguished frosl the change 

* 
of o due t o  chan e of u)*; the second component is readily seen to be analogous 
t o  the H torque 7 except for  the sign and a constant factor).  Combining the 
effects of these two components, it can be readily shown tha t  the  proportional 
radial  ra tes  Fdth respect t o  travel are 

in agreement dth the linear theory. 

Again, certain refinements by the recission of the assumptions of l i nea r i ty  
a re  possible, i f  not profitable. In particular, it w i l l  be readilp seen tha t  
there are some effects due t o  the components of cross-torques along - L. 
* 

Cf.  a b o  EG 668 and BRL 882. 
w 

bt to be confused with the fac t  that  the arrow of J) on Fig. 16 is Fn the 
direction of positive axial drag. 





CONCLUSION 

We have thus accomplished the follouing: 

. 1. Established an in terpeta t ion,  and a v i s ~ e a t i o n ,  of the well- 
b u n  results of the  mathematical linear theory of yaving motion. This vis- 
ualisation is  not limited to the line- theory, and may be used as  a starting 
p i n t  fo r  the more advanced problems of ball ist ics.  

2. Eeproduced a l l  resul ts  of the llnear theory withoat resorting 
t o  calculus (saving that excellent tool for the more uarthuhila problem of 
balusti cs) . 

3. Rwieved the theory of yawing motion in the l i gh t  of the l a t e s t  
experimental information (cf ., e.g., the inportance of the non-llneprities 
of T i n  comparison d t h  XF). 

b. Ontlined (crudely) effects of some of the non-linearities of 
ball ist ics.  

5. ham attention t o  a certain inherent weakness of the present- 
day mathw~tical. approach, vie., the e h q  s p l i t  betuean the simple linear, 
and generally-uuaolved non-linear, cases. It is hoped that  some day someone 
w i l l  introduce some radical  solution of this difficulty; it might take the  
form, f a r  instance, of a special-purpose analog differential  analyzer that  
has, so t o  say, the  spherical trigonometry bui l t  into it. 

The justice of the  probable criticisms, that  (a) we could not have done 
t h i s  work had the mathematical approach not blaeed the  trail, and (b) it would 
be simpler t o  learn calculus, - is so obvious that  it reqairss no cament. 

Incidentally, our approach does aeem to have blwed the Pail in tuo more 
advanced problems: the effect of asymmetry of the shell,  (m mentioned on 
page U of 685) and the  effect of the l iquidity of the filler. However, 
both of those problems are  outside the  s c o p  of t h i s  paper. 



Effort was made t o  adhere to familiar notation, even a t  the cost of 
sane minor inconsistencies. 

Underlined l e t t e r s  stand for  three-dimensional vectors. Otherwise 
L l e t t e r s  are wed for: scalar quantities (e.g., mPgnit.de of the vector); 

to designate a point on the sketch; and on a few occasions, explained in the 
context, for  complex quantities. 

Subscript 1 is  used to designate a vector of uni t  magnitude; an exception 
is the axial spin %, where this subscript is used (after  BRt &6) for the 

axial component of the angular velocity m; the cross-ccdnponerrb is  considered 
ei ther as the  vector rl, or as  the maUr-7 , but i s  v i s y  as  an amow 
on the sketch, viz., Essentially as the complex quantity of BBL &6. 

While the dot over a l e t t e r  indicates, as usual, the derivative of a 
quantity d t h  respect t o  time, these derivatives (spoken of as mrates") are 
introduced each time as separate symbols. 

Subscripts n and p refer t o  nutation and pecession. 

Consistent units are assumed throughout. 811 angles pre in radiane 
(though often units of angles do not matter). 

m = mass of shell;  d = caliberj  u - vebc i ty ;  g gravity; 1% - angle 
of inclination of trajectory, &&or&-positive upward; p- density of the air; 
A and B are axial and transverse moments of inertia, and k, and k are the 

comespDnding r a d i i  of gyration in calibers; v - spin in padi~ne pcr callber 
of travel; s - s t ab i l i t y  factor, aa defined by (3"). 

o 4 1 - l / s ,  the very convenient and fomiliar (though still nameless) 
parameter of exterior bal l is t ics ,  particularly in the l inear  theory; its 
physical significance is cluu. fib (3B). - direction of trajectory (velocity of the c.g. of s h s ; ~ ) ;  4 - 21 , 
direction of shell 's axis; L - angular mommttum of the $hell1 O - t o t e l  torqne 
acting upon the shell. ~ e t z e r '  0 on saae sket-che~ d e n o w  ahefl ls  center d f  
gravity. 

6 - yaw (angle from 5 to %); qpasi-nutation (pngb fram 2 to &; 
also d e ~ t e d  by QN); - quasi-pecesaion (angle frola z, t o  &; d o  denoted - - 
by QP); - angular velocity of quasi-nutation d t h  respect t o  the instantan- 
eous position of L, cf. (2); f(6,g) - the trigonometric function deflned by 

L (b )  and relevant For instantaneouely c i r c a  yawing motion: cf. Fig 6; y 
and $ are.atn=Uiary angles, as denoted on the sketches. 



M = overturning moment; B - Armping moment; T Magnus moment; XT - 
cross-Wgnus mment; N - Normal force; F - Magnus force; 
XF = cross-Magnus force; D - drag; DA - axial  drag. I ta l ics  a p and& force; are 
used t o  distinguish the axial torque and lift from the moment of iner t ia  
and angular momentum; but l i t t l e  confaeion aould arise i f  A and L are used, 
as  is  customary. After Synge, the words "moment* and ntorquen are used 
interchangeably, as are *angular v e l o c i t p  and *spin*. K ' s  a re  defined in 

3 2 2 IBL h 6 ;  similarly, J - Kpd /m; J = gdsid/u and Jo - gdcose/u . As i s  
customary, coefficient p is associated with N; to combete the  eymmetry 
(and in minor variance from Fowler and BBLL 6&), h i s  analogously associated 
d t h  8, t with T, and with L. 

Points of compass (N, NE, E, SE, S, 9W, W, NW) are used t o  Fndicste 
the direction of the yauing motion, as viewed on Fig. 4, qualitatiodly. 
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